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Preclinical longitudinal imaging 
of tumor microvascular 
radiobiological response with 
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Radiation therapy (RT) is widely used for cancer treatment, alone or in combination with other 
therapies. Recent RT advances have revived interest in delivering higher dose in fewer fractions, 
which may invoke both cellular and microvascular damage mechanisms. Microvasculature may thus 
be a potentially sensitive functional biomarker of RT early response, especially for such emerging RT 
treatments. However it is difficult to measure directly and non-invasively, and its time course, dose 
dependencies, and overall importance in tumor control are unclear. We use functional optical coherence 
tomography for quantitative longitudinal in vivo imaging in preclinical models of human tumor 
xenografts subjected to 10, 20 and 30 Gy doses, furnishing a detailed assessment of vascular remodeling 
following RT. Immediate (minutes to tens of minutes) and early (days to weeks) RT responses of 
microvascular supply, as well as tumor volume and fluorescence intensity, were quantified and 
demonstrated robust and complex temporal dose-dependent behaviors. The findings were compared to 
theoretical models proposed in the literature.

Radiation therapy (RT), alone or in combination with other therapies, is one of the most commonly used treat-
ment strategies for managing cancer. Typical clinical doses for targeting cancer cells in tumors are 2 Gy per frac-
tion, administered daily for 5–6 weeks for a total cumulative dose of 50–70 Gy1. Such fractionation has been 
considered to be the most clinically effective, increasing the therapeutic ratio by repairing normal tissues and 
enhancing tumor cell kill compared to the equivalent single-fraction dose. However, recent advances in RT deliv-
ery and monitoring of the radiobiological tumor effects have led to the development of stereotactic body radiation 
therapy (SBRT), which delivers higher doses per fraction and fewer fractions for improved local control and lower 
damage to surrounding normal tissues2.

Preclinical studies provide emerging evidence that higher doses of radiation induce additional tumor cell kill 
through “non-classical” radiobiological mechanisms, mediated by tumor microvascular damage3–6. Specifically, 
Fuks and Kolesnick suggested that increased anti-tumor RT-effects are due to vascular damage7–9, with a min-
imum threshold dose of ~8–10 Gy8. Similarly, tumors receiving high dose RT were found to respond above the 
levels predicted with existing radiobiological models of cell death alone10. This was linked to the significantly 
increased proliferation rate of tumor vascular endothelial cells (EC) undergoing angiogenesis, potentially making 
tumor vasculature more sensitive to ionizing radiation11. Death of tumor EC was reported to initiate the inflam-
mation cascade12, yielding hypoxic, acidic and nutrient deprived microenvironment, and enhancing radiation 
toxicity13.
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In spite of intense research in this area, the underlying biological mechanisms of tumor response after 
high-dose RT remain unclear14–17. Little is also known about the dynamics of vascular changes, organization 
of tumor vasculature, angiogenesis and neovascularization at various post-RT stages. This is mostly due to the 
inability to study the dynamic response in-situ at the capillary level. A recent review of over 40 preclinical studies 
demonstrates lack of experimental consensus on the RT microvascular response5. The conflicting data arises 
from the variation in experimental protocols (animal models, cell lines, x-ray energies, dose levels), as well as 
differences in imaging and quantification techniques (immunohistochemistry ex-vivo, Doppler sonography and 
computed tomography in-vivo, etc.). Although some theoretical mechanistic models are proposed for RT vas-
cular response effects, little direct experimental in-vivo data exists to support and validate these models. A good 
example is Kozin et al.’s model of neovascularization after high single-dose RT in rodents based on a thorough 
analysis of (conflicting) published data covering last 50 years of research in the field18. The numerous questions 
raised in this work about vascular dynamics in irradiated tumors demonstrate “… the urgent need for track-
ing vascular changes at the capillary level post-RT using advanced modern technologies” (ref.18). If successful, 
this line of research should enable better understanding of post-RT microvascular effects and provide early 
(inter-fraction) response metrics, potentially enabling personalization of the radiation treatments (adaptive RT). 
Addressing this problem is particularly timely because higher-dose radiation treatments such as SBRT, with their 
suggested greater involvement of the tumor microvasculature, are currently under active investigation in radia-
tion oncology.

Tumor capillaries are known to be particularly sensitive to radiation5, but most of imaging modalities 
(ultrasound, magnetic resonance imaging, confocal fluorescence microscopy, etc.) do not have the requisite 
resolution capability or require potentially toxic contrast agents to visualize them and monitor their response 
longitudinally. Here we propose a new insight into the response of tumor microvasculature to RT using func-
tional optical coherence tomography (OCT). OCT is an emerging label-free non-invasive 3D optical imaging 
modality for visualizing subsurface tissue details in-vivo at resolutions approaching microscopy and blood flow 
details at the microcirculation level19. Its functional extension called speckle variance OCT (svOCT) enables 
three-dimensional depth-resolved imaging of microvasculature in-vivo20. The endogenous contrast of svOCT 
images originates from the different temporal light scattering properties between the blood within vessels and 
the surrounding “solid” tissues. Other than not requiring contrast agents, significant advantages of svOCT for 
tracking tumor vasculature post-RT include fast volumetric scanning (few seconds to a few minutes depending 
on the tumor size), rapid processing, 1 to 3 mm imaging depth (depending on tissue and tumor type), and blood 
flow/direction independence; this last characteristic is advantageous in that it maximizes microvascular detection 
and visualization, but may be a drawback if flow speed information is required. In addition, OCT scanners are 
now relatively cheap and portable.

The current “shedding light on radiotherapy” study builds on a decade of background work. Initially 
Mariampillai et al. developed svOCT method for microvasculature monitoring21. Leung et al. designed the 
heated animal restrainer for svOCT imaging, irradiation protocol and dose verification22. Maeda et al. opti-
mized the well-established, but occasionally disadvantageous dorsal skin window chamber (DSWC) model23 and 
conducted a pilot study of a short-term response (2 weeks) to 30 Gy single-dose RT24. Conroy et al. developed 
post-processing techniques for vasculature quantification with biological metrics25. We build on this decade of 
previous experience, improving and refining essentially every aspect of this imaging and analysis platform, to now 
enable identification of vascular radiobiological response.

We selected the NOD-Rag1null IL2rγnull (NRG) mouse strain for this study because of its radio-resistant and 
immune-deficient nature26. Driven by current emerging clinical interest in SBRT for treating pancreatic can-
cer27–29, we used Bx-PC3 human pancreatic cancer cells to study its response to irradiation. From a variety of 
microvascular metrics developed by us and others over the years (vessel tortuosity, branching, length, fractal 
dimension, etc.25,30–32), here we report on the vascular volume density due to its calculation simplicity (number 
of vascular pixels divided by total pixels in the selected volume), robustness, minimal operator dependence and 
potential ease for results replication by other research groups. Two additional vasculature-independent measures 
were also performed for tracking RT response: tumor volume via caliper measurements and tumor cell fluores-
cence intensity via fluorescence microscopy after each svOCT imaging session. Tumor resections for histological 
staining and histopathologic evaluation were also performed at selected post-RT stages in several animals to 
support and validate the in-vivo longitudinal observations.

Materials and Methods
Mouse model, cell culture and tumor model. All animal procedures were performed in accordance 
with appropriate standards under protocol approved by the University Health Network Institutional Animal Care 
and Use Committee in Toronto, Canada (AUP #3256). Human DsRed-labeled BxPC-3 pancreatic cancer cells33 
were purchased from AntiCancer Inc. (San Diego, CA, USA) and cultured in RPMI 1640 medium supplemented 
with 2 mM L-glutamine, 10% fetal bovine serum and 1% Penicillin Streptomycin (GIBCO BRL) at 5% CO2 and 
37 °C. DsRed-labelled-BxPC-3 tumors were generated by injection of 2.5 × 105 cells prepared in 10 μL of 1:1 
PBS:Matrigel (BD Biosciences, ON, Canada) solution into the dorsal skin of seven- to eight-week-old NRG mice 
(Jackson Labs, ME, USA) using a 30 G needle. The DSWC surgery was performed 15–21 days post injection after 
the tumors reached 3–5 mm diameter (Fig. 1(a–c)). Titanium window chambers were surgically implanted into 
the dorsal skinfold of anesthetized (mixture of 80 mg/kg of ketamine and 5 mg/kg of xylazine) mice using the 
procedure described in ref.23. svOCT imaging was performed after a recovery period of three to five days post-
DSWC installation. Optimized dorsal skin DSWC model allowed for monitoring the response for significantly 
longer period of time (Fig. 1(d)) compared to similar studies reported in the literature34.
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Tumor irradiation. Ionizing radiation was delivered to the tumor using a commercial small animal X-ray 
micro-irradiator system (XRad225Cx, Precision X-Ray Inc., North Branford, CT, USA) (Fig. 1(e)). With com-
puter control, the system delivered single focal radiation beams (225 kVp, 13 mA, added filtration of 0.32 mm Cu) 
at doses of 10, 20 and 30 Gy with a diameter of 8 mm directly to BxPC-3 tumors, with a dose rate of 2.63 Gy/min. 
The X-ray tube was mounted on a rotating gantry with a flat panel detector located opposite the isocenter, which 
facilitated imaging and irradiation of the target at any given angle. The irradiator was calibrated to ensure accurate 
dose delivery with tissue phantoms using methods previously described35.

Prior to irradiation, mice were anesthetized using 5% isoflurane and maintained using 2% isoflurane delivered 
through a mask. In order to align the center of the tumor within the window chamber to the isocenter of the radi-
ation beam, fluoroscopy images were taken and animal stage position adjusted accordingly. The location of RT 
and dose levels (Fig. 1(f) and (g)) were confirmed with calibrated Gafchromic EBT-2 film (ISP Inc., Wayne, NJ, 
USA) consisting of a radiosensitive monomer that polymerizes and changes color with absorbed dose.

Experimental study schema. The time course of conducted experiments is shown in Fig. 2(a). Initially, 
tumor cells were injected into the dorsal skin. After the tumor volume reached 3–5 mm in diameter ~2 weeks 
later, the DSWC was implanted. Irradiation was performed ~10 days after DSWC installation. This delay ensured 
adequate tumor and vascular growth, assessed by periodic svOCT and fluorescence imaging. At day “R”, tumor 
was treated with a single-dose of radiation using the small animal irradiator. For five to eight weeks following irra-
diation, tumor changes were monitored repeatedly with caliper measurements (tumor volume), svOCT imaging 
(vasculature), and epi-fluorescence microscopy (tumor cell status). Specifically, tumor size at the back side of the 
window chamber (Fig. 2(b)) was measured in three perpendicular directions with calipers prior to every imaging 
session. svOCT from the front side of the window chamber (Fig. 2(c)) was used to image tumor microvasculature 
(Fig. 2(d)) within the area labeled by the black rectangle. DsRed (535 nm excitation, 580 nm emission) tumor 
cell fluorescence images (Fig. 2(e)) were obtained with an epi-fluorescence microscope with consistent exposure 
settings (Leica MZ FLIII, Leica Microsystems, Richmond Hill, ON, Canada), and analyzed using MATLAB by 
computing the average intensity of all pixels.

To support longitudinal in-vivo observations, several animal were sacrificed and tissue sections were histolog-
ically stained at various time points. Mice were euthanized by anesthesia with ketamine/xylazine followed by cer-
vical dislocation. Tumors were resected, fixed in 10% formalin and processed for histologic staining. Hematoxylin 
and eosin (H&E) were used to view cellular morphology, and labeling of DNA fragments (TUNEL antibody 
assay) was used to quantify cellular apoptosis. Slides were scanned by Aperio Scanner, and TUNEL positivity 
was measured for the entire tumor section using Aperio ImageScope software (Leica Biosystems, Concord, ON, 
Canada).

Optical coherence tomography system. All OCT images were acquired using a previously-described 
swept source OCT system based on a quadrature interferometer to suppress the complex conjugate artifact, as 
shown in Fig. 3 (refs36,37). Briefly, the source (HS2000-HL, Santec, Japan) had a central wavelength of 1320 nm, 
a full width at half-maximum wavelength of 110 nm and an average output power of 10 mW. The repetition scan 
rate of the source was 20 kHz with a duty cycle of 68%. The light output was split in the first 2 × 2 coupler and 
90% was directed toward the tissue. A 2D galvo scanning system enabled lateral beam translation and thus 3D 

Figure 1. (a) NRG mouse with grown BX-PC3 tumor (blue arrow).The back was shaved prior to DSWC 
installation. (b) Flipped skin on the opposite side of the back showing the grown tumor during DSWC 
installation procedure. (c) Mouse with DSWC installed. (d) Same mouse as shown in (c) 9 weeks post-DSWC 
installation and 7.5 weeks post-RT (single-dose 20 Gy). (e) NRG mouse placed in the small-animal irradiator. 
225kVp X-rays were incident from the bottom; white-light images showing (f) tumor location within a DSWC 
covered with EBT-2 Gafchromic film. (g) EBT-2 Gafchromic film color change after 10 Gy single-dose RT. Note 
that DSWC glass coverslip retaining ring was removed prior to RT to avoid possible dosimetric complications. 
Scale bar is 3 mm.
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volumetric imaging (GVS-012, Thorlabs, NJ, USA). Tissue back-scattered light was coupled back within the opti-
cal fiber and fed into a semiconductor optical amplifier (SOA - BOA1017, Covega, MD, USA), with gain adjusted 
to 35 dB, to boost the signal level. The SOA had the same center wavelength and bandwidth as the laser source. 

Figure 2. (a) Experimental time course. At day -28 tumor cells were injected into the dorsal skin. DSWC was 
implanted after the tumor volume reached 3–5 mm in diameter. Tumors were irradiated ~10 days after DSWC 
installation (day 0 labeled with “R”). Right after irradiation tumor vasculature was monitored within 90 minutes 
(minutes time scale). For five to eight weeks following irradiation, tumor changes were monitored repeatedly 
with caliper measurements (tumor volume), svOCT imaging (vasculature) and epi-fluorescence microscope 
imaging (cancer cell fluorescence). Tumor resection for histological staining was performed at selected post-RT 
stages in several animals to support and validate the in-vivo observations. White light images of the (b) back and 
(c) front of the tumor within window chamber. (d) svOCT microvasculature map of the area labeled with black 
dotted rectangle in (c). (e) Tumor cells Ds-Red fluorescence image. Scale bars are 500 μm.

Figure 3. Schematic diagram of the swept-source OCT system setup with quadrature Mach-Zehnder fiber-
based interferometer and optical amplification: SOA - semiconductor optical amplifier, PC - polarization 
controller, A - fiber attenuator, DB - dual balanced photo-detector, DAQ - data acquisition card, C - collimator, 
MZ Interferometer - Mach-Zehnder interferometer, L - lens, M - mirror, SG - scanning galvo, CR - circulator.
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We used a polarization controller (located before the SOA) to minimize the differences between the shape of 
normalized light spectra in the reference arm and after the SOA. The amplified signal was combined with the ref-
erence signal in a 3 × 3 coupler followed by a 2 × 2 coupler. Two channels balanced detection was used to extract 
the complementary components of the complex interferometric signal. Two attenuators were used to match the 
optical power entering the balanced detectors (PDB150C, Thorlabs, NJ, USA) with a saturation level of 5 mW. 
Two detector outputs were digitized using a data acquisition card (ATS9625, Alazartech, Montreal, Canada) with 
16-bit resolution and sampling rate of 250MS/s. The resultant axial and lateral resolutions (in air) were 8 µm and 
15 µm, respectively. To ensure consistency of obtained in-vivo data over time and between animals, OCT optical 
power at the probe output was measured before each imaging session to be 5 mW, OCT probe imaging angle was 
set to 84°, relative to horizontal, and imaging speed was fixed at 40 frames per second.

Imaging, data processing and representation. svOCT. Tumor-bearing mice (n = 60 with 45 irra-
diated and 15 non-irradiated tumors) were anesthetized by inhalation of 2% isoflurane and placed on a mouse 
restrainer22 with built-in 37 °C heating element to prevent motion artifacts and maintain physiological temper-
ature during imaging procedures. OCT volumetric images (Fig. 4(b)) were taken over a 6 × 6 mm2 field of view 
with 800 A-scans per frame and a gate length of N = 8 (number of sequential same-location B-scans), to enable 
inter-frame comparison required for svOCT analysis (Fig. 4(c)). This gate length may be optimal for low bulk tis-
sue motion scenarios, such as the DSWC20. The svOCT algorithm (Fig. 4(d)) was used to calculate the inter-frame 
intensity variance from the same spatial location, with the contrast arising from differences in time-varying 
speckle properties at each pixel:
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where N is the number of B-scans acquired at the same spatial location within a tissue volume, Iizx is the intensity 
of the (z,x)th pixel of the i-th B-scan, z is the axial coordinate, x is the lateral coordinate and Izx is the mean inten-
sity of i pixels from N consecutive B-scans. This procedure was then repeated for all spatial locations within the 
scanned tissue volume to obtain SVzx vascular cross-sections, as shown in Fig. 4(e).

In Eq. (1), if N B-scans are acquired faster that the “stationary” solid-tissue decorrelation time, then the value 
of ( −I Iizx zx) for these pixels approaches zero, thereby suppressing the tissue signal in the resulting SV image. 
Here, the B-scan acquisition rate was set to 25 ms: this was fast enough that signals from stationary tissues did not 
de-correlate between frames (thus ~0 svOCTsignal), while being sufficiently slow to ensure complete inter-frame 
de-correlation for pixels representing vascular blood (thus high svOCTsignal).

Volumetric vascular images were composed of hundreds/mm of SVzx vascular cross-sections taken in lateral y 
dimension. Those images were post-processed for vascular volume density (VVD) calculation, vascular en-face 
2D projection (Fig. 4(f)) and depth encoded 2D (Fig. 4(g)) and 3D (Fig. 4(h)) representation using (i) morpho-
logical opening/closing algorithm for noise and artifact removal38 to minimize contributions from non-vessel 
signals such as bulk tissue motion; (ii) binarization with Otsu’s thresholding method39 in the depth direction to 
retain deep-vessel information otherwise suppressed due to the exponential attenuation of the OCT signal; (iii) 

Figure 4. Real-time imaging of tumor microvasculature via svOCT. (a) White light image of window chamber 
with tumor tissue under the glass coverslip. (b) OCT volumetric image of (a) taken over a 6 × 6 mm2 field of 
view. (c) 8 sequential same-location B-scans for further inter-frame comparison required for svOCT analysis. 
(d) The svOCT algorithm for inter-frame comparison of pixel texture. (e) SVzx vascular cross-section obtained 
with svOCT algorithm. (f) Vascular en-face two-dimensional projection. (g) Depth-encoded vascular en-face 
two-dimensional projection. (h) Depth-encoded vascular volume of tissue volume shown in (b).
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tumor surface masking and leveling for correct depth encoding while preserving blood vessel topology, orienta-
tion and connectivity. VVD was calculated as a fraction of vascular pixels of the total number of pixels in the 
analyzed volume. Green-yellow-red-grey-black color map (256 color gradations) was chosen for depth-encoding 
(green = top tissue layers just below the glass coverslip, black = deepest tissues). Matlab software (Mathworks, 
MA, USA) was used for processing the data.

Scientific rigour and statistical considerations. Many literature studies of radiobiological microvascu-
lar responses often report conflicting results, likely due to the variations in experimental protocols (animal and 
tumor models, irradiation methods, etc.), imaging methodologies, and quantification techniques5; these difficul-
ties underscore the subtle and complex nature of the problem. After more than a decade of careful background 
preparation, the current study finally ensures robust and unbiased experimental design and analysis of results, 
rigorously quantifying vascular radiobiological response of irradiated tissues. For the three reported dose levels 
of 10, 20 and 30 Gy, a total of 60 mice were used: 15 animals for each dose plus 15 un-irradiated. As some animals 
were used for validating histology, animal numbers reduced towards the latest time points (~8 weeks), from 15 
to 7–8. This relative reduction of animal numbers is reflected in the size of error bars in the plots reported below; 
the initially large number of 15 animals per dose was chosen to ensure robust results throughout the imaging 
time course regardless of this histological attrition. Further, as sex is an important and potentially confounding 
biological variable, only female mice were used to exclude this uncertainty. A new batch of pancreatic tumor cells 
and ‘fresh’ chemicals were purchased from official vendors to further reduce the risk of laboratory-to-laboratory 
differences and increase rigor and robustness of the reported trends.

Repeated measures analysis of variance (ANOVA) was performed using SPSS Statistics software (IBM, 
Armonk, NY). Two-way repeated measures ANOVA with Bonferroni post-test was used for serial imaging data 
to compare the results for the groups irradiated with different doses. The number of samples (n) indicates the 
number of mice per treatment group. In all cases, P < 0.05 was considered statistically significant, and all error 
bars represent mean ± standard deviation.

Results and Discussion
svOCT imaging and its associated post-processing steps provide a powerful platform for assessing volumetric 
tumor vasculature growth and response to radiation. As seen in Fig. 5, pancreatic tumor xenograft vasculature 
aggressively developed within ~2 weeks after subcutaneous injection of tumor cells into dorsal skin. At day 3 
after injection seen in Fig. 5(a), there was microvascular growth from neighboring normal tissue vessels40. Vessel 
growth continued, forming the “claws” as seen at one-week time point in Fig. 5(b). After these connect at ~day 
10 (Fig. 5(c)), further new vessels quickly sprout inside the tumor to fully vascularize it within a few days (day 16 
in Fig. 5(d)). The structure of vascular bed in tumor is seen to be markedly different from that in normal tissue, 
where microarchitecture of vascular network is more hierarchically organized as shown in Fig. 5(e), with more 
ordered and evenly distributed vessels to allow adequate perfusion of nutrients and oxygen to all cells41. In con-
trast, tumor vessels are immature, tortuous, irregular in diameter, and often sharply bent. They form a disorgan-
ized labyrinth with a lack of conventional blood vessel hierarchy in which arterioles, capillaries, and venules are 
not clearly identifiable42.

Introducing single-dose radiation treatment into this course of tumor development changes its growth dynam-
ics. Prior to examining longer-term responses (days-weeks), we look closely at the immediate (minutes-scale) 
response. In other tumor types43,44 and in our earlier investigations using intravital microscopy45, irradiation with 
high single doses causes rapid vascular alterations in human tumor xenografts. Depth-encoded svOCT panels in 
Fig. 6 demonstrate the immediate microvascular effects following 10 Gy irradiation. The vascular volume den-
sity (VVD) markedly decreased by 26% half an hour post-RT (Fig. 6(b)) from its initial state before irradiation 
(Fig. 6(a)). Interestingly, maximum response at this time point is seen in small vessels (10–30 μm in diameter); 
small-to-medium size vessels (30–70 μm in diameter) appear less affected.

Many of these alterations seem non-permanent, with majority of these vessels re-appearing later: at 45 min 
and 60 min time points, the circulation recovery was detected (Fig. 6(c,d)) reaching 90% of initial vascularity at 
90 min post-RT (Fig. 6(e)). This may be an indication of temporary transient microvascular thrombosis or capil-
lary anastomosis bypass after irradiation24,45,46. In other words, those vessels that reappeared at later time points 
post-RT were not permanently damaged by irradiation. Permanent disappearance of ~10% of vessels may be an 

Figure 5. BX-PC3 pancreatic tumor vasculature development within 16 days after subcutaneous injection of 
cancer cells into dorsal skin. (a) 3 days; (b) 7 days; (c) 10 days; (d) 16 days after injection. (e) Healthy tissue 
vasculature for comparison. Scale bars are 0.5 mm.
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indication of radiation-induced death of endothelial cells and collapse of the fragile tumor vessels as a result of an 
interstitial fluid pressure elevation caused by extravasation of plasma proteins47,48.

Figure 7 shows the effect of a 20 Gy single dose on tumor microvasculature over 6 weeks (from 1 week pre-RT 
to 5 weeks post-RT). The tumor was irradiated after being fully vascularized (“Day -0”). Initial response is seen at 
1.5 hours after irradiation (“Day +0” image), where VVD = 83% of pre-RT vasculature; svOCT images at t = 2, 
6 and 8 days post-RT clearly demonstrate that vessels in the tumor core are preferentially affected compared 
with those in the tumor rim. This supports the previous conjecture that parts of vascular networks in the tumor 
periphery are ~ normal tissue blood vessels sprouting by angiogenesis into the tumor mass18; these might be more 
resistant to radiation compared to the new tumor blood vessels in the core formed by vasculogenesis49,50.

Figure 6. Immediate (minutes - 10s of minutes) tumor microvascular response within 1.5 hours post-RT 
10 Gy single-dose. (a) Before irradiation; (b) 30 min after; (c) 45 min after; (d) 60 min after; (e) 90 min after 
irradiation. Scale bars are 1 mm. The numbers below each panel represent VVD, relative to the pre-radiation 
value.

Figure 7. Longitudinal OCT imaging of radiation response of the tumor vasculature to single dose of 20 Gy. 
svOCT images were taken before and multiple times following irradiation. “Day −0” image was taken 1 hour 
pre-RT and “Day +0” represents 1.5 hours post-RT. Maximum suppression of tumor vasculature is ~ at day 8, 
followed by vascular re-growth from the vessels outside the tumor. Scale bars = 1 mm.
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Data beyond ~10 days provides clear evidence of tumor re-vascularization via growth of the surviving vessels, 
in accord with earlier studies and hypothesis that tumor regrowth after local irradiation is dependent on blood 
vessel formation by surviving endothelial cells18,51. It is also interesting to note that throughout this > 10 days 
revascularization process, the tumor region appears to be getting smaller.

The individual ‘case studies’ presented above are interesting and do provide some insights, but the real value 
of the developed svOCT platform is in its large imaging throughput capability and quantifiable metric extrac-
tion. We thus present a quantitative summary of the entire n = 60 animal study, for the three irradiation dose 
levels (plus un-irradiated controls) showing the three measured variables: tumor VVDs extracted from svOCT 
images (Fig. 8(a)), volumes from caliper measurements (Fig. 8(b)), and fluorescence intensity from microscopy 
(Fig. 8(c)).

The longitudinal monitoring data is shown over the entire ~10 week temporal observation interval. Error 
bars are calculated at each experimental point, but are only shown at selective intervals for clarity – in the pre-RT 
regime, in the midcourse, and towards the end of the post-RT observation interval. Figure 8(d) shows the three 
metrics on a single panel for the 20 Gy dose case. Also shown in Fig. 8(e) is the proposed literature model18 for the 
temporal course of microvascular changes post RT; as mentioned previously, this model was not based on direct 
experimental observations. It will be used here to help interpret the derived experimental data of Fig. 8(a)–(d).

Starting with Fig. 8(a), several important trends of tumor microvascular response to single-dose irradiation 
become evident:

•	 irradiation inhibits VVD (for up to 2–4 weeks following irradiation);
•	 magnitude of inhibition increases with dose levels (~10% drop 2 weeks after 10 Gy, ~70% drop 4 weeks after 

30 Gy); the decrease is temporary (thus single dose is not enough to permanently control the tumor), and 
eventually VVD returns to pre-irradiation levels;

•	 time-to-return increases with dose (~3.5 weeks for 10 Gy, > 8 weeks for 30 Gy);

Figure 8. Tumor development dynamics as reflected via changes in vascular volume density (VVD), 
tumor volume and fluorescence intensity after 10, 20 and 30 Gy single-dose local irradiation. (a) Tumor 
microvasculature response. (b) Tumor volume response. (c) Tumor fluorescence response. Quantified values 
of VVD, volume and fluorescence pre- and post-RT changes of each tumor were normalized to values of these 
metrics obtained 1 hour before irradiation of the same tumor. Non-irradiated tumors (0 Gy data) continued to 
grow and were sacrificed at earlier time points for humane reasons (tumors grew too big and data is not shown 
for the entire course of 7.5 weeks post-RT). (d) Summary graph for VVD, volume and fluorescence response 
to 20 Gy single-dose irradiation. In (a)–(d), symbols are experimental points, and lines are a guide for the eye. 
n = 7–15 per group, error bars = mean ± standard deviation. (e) A recently proposed literature model of tumor 
growth and corresponding changes in microvasculature following 20 Gy single-dose irradiation (after ref.18).
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•	 tumor microvasculature response within 1.5 hours after irradiation is more pronounced for higher doses 
(23% of microvessels exhibited temporary shutdown after 30 Gy, versus 10% after 10 Gy). The majority of 
these were seen to be microvessels of less than 30μm in diameter;

•	 the described statistical analysis of variance was performed on the three irradiated and one un-irradiated 
control group over the course of corresponding temporal trajectories, to check if the four dose cohorts were 
indeed different from each other. For t > 1.5 weeks, this was definitely so, with P-values in the 0.0001–0.01 
range. Immediately following irradiation for up to 1–1.5 weeks, the situation was ambiguous, with P-values in 
the 0.03–0.15 range (largest P-value for the 10Gy-to-0Gy cohort difference at t < 1 weeks). We thus conclude 
that the differences in the temporal trajectory of the microvascular response increase with dose, and take 
~1–1.5 weeks to manifest unequivocally.

These direct and robust experimental observations of longitudinal microvascular RT response in-vivo yield 
solid results for de-novo mechanistic model development, and can also serve as empirical foundation/validation 
for previously-proposed models (e.g., one shown in Fig. 8(e), as discussed below).

Tumor volume response to different doses (Fig. 8(b)) also demonstrates complex dynamics over the mon-
itored time period, its overall shape and dose dependence being somewhat similar to the VVD behavior. The 
temporal response is overall slower than the microvasculature, in that the maximal tumor shrinkage (minimum 
tumor volumes) are reached at t ~ 4–5 weeks following dose deposition, independent of dose levels. This sequence 
of radiation damage events – first microvascular response followed by cellular/tissue shrinkage – makes sense 
in light of existing radiobiological models mentioned previously5,18. It also suggests that functional imaging 
approaches, such as svOCT that target earlier-responding microvasculature may indeed be preferable for poten-
tial treatment adjustment/personalization compared to ‘conventional’ anatomical tumor-volume-based imaging 
methods (e.g., x-ray based portal imaging or cone-beam CT52). Analogous to VVD, we note that the maximal 
tumor shrinkage increases with dose (10 Gy – 20%, 30 Gy – 80%), and the time to initial volume recovery is also 
dose dependent (10 Gy – 5.5 weeks, 20 Gy – 8 weeks, 30 Gy > 8 weeks (beyond our experimental observation 
interval). There is also some indication of complex early growth inhibition (without significant shrinkage) for the 
first 1.5–3 weeks following irradiation followed by a rapidly accelerating rate of tumor volume decrease (nadir at 
4–5 weeks), and then recovery. These experimental observations will (1) need to be examined in additional tumor 
models to test and verify their generalizability and (2) will have to be accounted for in future predictive radiobi-
ological models that can explain such complicated growth dynamics, including the complex interplay between 
vascular and cellular compartments.

Tumor DsRed fluorescence intensity has been reported to indicate cancer cell viability levels53 and to serve 
as indirect measure of the proportion of hypoxic cells in the tumor45. Figure 8(c) shows the response curves of 
this metric for the three doses. Once again, the general shape of the curves is similar to that of VVD and tumor 
volume, with greater resemblance to the latter; one significant difference is the sharp drop in fluorescence inten-
sity very early following irradiation. Specifically, within one day post-RT, a significant decrease is seen in tumor 
cell fluorescence intensity (14% drop for 10 Gy, 30% for 20 Gy, and 48% for 30 Gy). There follows a 1–2 week long 
slight increase, followed by another drop (nadirs at 3 weeks and 85% for 10 Gy; 4 weeks and 60% for 20 Gy; and 5 
weeks and 30% for 30 Gy). The subsequent time-to-recovery is also dose-dependent – 4 weeks (10 Gy), 6.5 weeks 
(20 Gy) and >7.5 + weeks (30 Gy).

To help better understand and interpret the various inter-connected temporal behaviors of the three measured 
metrics, we present all three on the same panel for a single dose of 20 Gy (Fig. 8(d)). Shortly after irradiation, 
tumor cell fluorescence intensity markedly drops together with collapse of tumor capillaries and small vessels fol-
lowed by vasculature partial recovery within first two days. Tumor cell kill (a combination of direct cellular dam-
age and vascular induced cell death mechanisms) causes tumor growth arrest with gradual tumor size decrease 
within first 10 days. For the latter mechanism, it was pointed out in 1980s that one endothelial cell subtends a 
segment of a tumor containing as many as 2,000 tumor cells54; thus collapse of one endothelial element of the 
down-stream blood flow may cause an avalanche of tumor cell death along the defunct vessels (as seen, the VVD 
response is ahead in time and in magnitude, compared to tumor volume). As the tumor shrinks and the VVD 
metric exhibits a plateau, more cancer cells gain access to oxygen and nutrients which may be the reason of tem-
porary tumor relapse (t~2 weeks). Despite this brief increasing volume trend, number of blood vessels continues 
to decrease, likely causing localized hypoxia (tumor fluorescence curve), and leading to significant tumor shrink-
age down to 45% of original size at week 4 post-RT. Tumor re-vascularization by growth of the surviving vessels 
starts after ~2 weeks post-RT. It is noted that as vessels start to re-grow and sprout into the tumor from sur-
rounding tissues (Fig. 6, days 13–35), tumor fluorescence intensity starts to grow as well (with a few days delay). 
Several days after that, the tumor shrinkage stops, following by the complete regrowth at 7.5 weeks. Teasing out 
the passenger versus driver effects – in other words, which of the recorded metrics is/are the primary cause(s) 
and which is/are the resultant effect(s) in the observed tumor response – is not directly evident from the data and 
was not meant to be addressed in this study. Indeed, additional radiobiological experiments and correspondingly 
advanced radiobiological models may be needed. For now, this robust and previously unavailable experimental 
data can serve as an important foundation for hypothesis-generating research.

Such advanced radiobiological models are indeed starting to appear in the literature. An example is shown 
in Fig. 8(e), put forth by Kozin et al.18 in 2012, based on the varying (and often conflicting) reports of irradiated 
tissue studies to date. Despite sub-optimal data for hypothesis generation, these authors were able to propose 
purported mechanisms of microvascular dynamics following high single dose of radiation, including the resultant 
effects of tumor volume shrinkage and subsequent regrowth. As seen in Fig. 8(e), the general shape of the theoret-
ically predicted tumor volume curve (with purported vascular mechanisms shown along the abscissa axis) agrees 
well with the experimental data of our study (particularly VVD and tumor volume metrics of Fig. 8(a) and (b),  
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respectively). In this context, these results can be seen as the direct and successful response to Kozin et al.’s charge 
to “… the urgent need for tracking vascular changes at the capillary level post-RT using advanced modern tech-
nologies” (ref.18). It will be interesting to see how this and related radiobiological models will be adjusted in light 
of the detailed results presented in this paper.

The exploration of additional microvascular metrics may provide more insights into radiation-induced tumor 
vascular response and, importantly, prediction of therapeutic outcomes. Among those in OCT angiography 
research, most promising may be vessel tortuosity (to evaluate the efficiency of blood transport and vascular 
remodeling), total and average vessel lengths (to measure vessel/capillary pruning), fractal dimension (to quantify 
the vascular space-filling properties and vascular network complexity), and tissue vascularity (to identify tumor 
regions that are likely to be hypoxic)25,30–32.

Fig. 9 presents Hematoxylin and Eosin (H&E) and TUNEL staining of tumor regions for the control and the 
three irradiated (10, 20 and 30 Gy) cohorts. Representative images at selected times (t = 2 weeks here) following 
irradiation are shown. Control staining (Fig. 9(a)) shows that tumor cells are in active proliferation state prior 
to irradiation (TUNEL), with many small and medium vessels (H&E). Two weeks following 10 Gy (Fig. 9(b)), 
mainly stromal cells are affected, with 16% of cancer cells undergoing apoptosis (TUNEL). Moderate damage 
(48%) is seen at 2 weeks post 20 Gy (Fig. 9(c)) to cancer and stromal cells (TUNEL). Finally Fig. 9(d) shows almost 
complete damage (98%) of stromal and cancer cells in tumor core (TUNEL) at 2 weeks post 30 Gy RT. Similar to 
the tumor in-vivo dynamics, these histological ex-vivo discrete point snapshots underscore the importance of (1) 
dose level and (2) time post-RT in furnishing the complex trajectory of tumor radiobiological response.

Conclusion
This study presents comprehensive experimental results from in-vivo pancreatic human tumor xenografts sub-
jected to three different radiation dose levels, with noninvasive imaging performed for up to 8 weeks following 
dose deposition. A novel state-of-the-art functional OCT microvascular imaging and quantification platform 
was developed, refined and validated specifically for this radiobiological monitoring study. Additional in-vivo 
measures, including tumor size and fluorescence, were also collected to supplement the obtained microvascu-
lar information. Complicated temporal trajectories of radiation response metrics were found, and compared 
with emerging radiobiological models of microvascular radiation response. The reported vascular volume den-
sity metric was simple to calculate, proved robust and was suitable to reflect the first-order changes in tumor 
microvasculature response to radiation. Higher-order metrics such as fractal dimension, average Euclidean 
vessel segment length, total length of smallest detectable vessels (~capillaries) and others25,32 that require addi-
tional signal processing/image analysis steps, may offer further useful quantifications. Study of their suitabil-
ity to radiation-induced vascular changes is currently ongoing, as are our initial attempts to apply radiomics/
machine learning approaches55,56 to the entire measured longitudinal RT response parameter space. Future work 
will examine the generalizability of these results in other preclinical in-vivo models, explore the effects of fraction-
ation (multiple dose treatments), and further expand our OCT-based “shedding light on radiotherapy” platform 
into pilot clinical studies of microvascular radiotherapeutic monitoring of patients57,58.
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