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A novel machine-learning method to

distinguish between tumor and normal
tissue in optical coherence tomogra-
phy (OCT) has been developed. Pre-
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clinical murine ear model implanted
with mouse colon carcinoma CT-26
was used. Structural-image-based fea-
ture sets were defined for each pixel
and machine learning classifiers were
trained using ‘“ground truth” OCT
images manually segmented by com-
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1 | INTRODUCTION

Recent advances in medical image processing, in modalities
such as magnetic resonance imaging (MRI) and computed
tomography (CT), show that the simultaneous use of many
tumor image characteristics may provide additional insights
in clinical outcomes prognosis [1-3], prediction of distant
metastasis risk [4], and even offer a link to cancer genetics
[5]. These methods are known by the common name of
radiomics. These features, usually derived from tumor

parison with histology. The accuracy of the OCT tumor segmentation method was
then quantified by comparing with fluorescence imaging of tumors expressing
genetically encoded fluorescent protein KillerRed that clearly delineates tumor
borders. Because the resultant 3D tumor/normal structural maps are inherently co-
registered with OCT derived maps of tissue microvasculature, the latter can be
color coded as belonging to either tumor or normal tissue. Applications to
radiomics-based multimodal OCT analysis are envisioned.

image processing, machine-learning, optical coherence tomography

image delineated on MRI or CT, include tumor size and
shape features, descriptors of the image intensity histo-
grams, descriptors of the relationships between image vox-
els (referred to as texture analysis), fractal features, and
others. Since all these characteristics are calculated inside
tumor regions, their extraction necessitates initial tumor seg-
mentation [1-5].

optical coherence tomography (OCT) is a minimally
invasive imaging yielding cross-sectional and volumetric
subsurface tissue images with spatial resolution of several

J. Biophotonics. 2018;11:e201700072.
https://doi.org/10.1002/jbio.201700072

www.biophotonics-journal.org

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | 10f9


http://www.biophotonicsournal.org
https://doi.org/10.1002/jbio.201700072

20f9 B

MOISEEV ET AL.

PHOTONICS

micrometers, to a depth of 1-3 mm [6, 7]. OCT’s use in
cancer imaging suggests that the radiomics approach can be
implemented here as well. In order to do this, one must first
develop algorithms for automatically delineating tumors in
cross-sectional (2D) and volumetric (3D) OCT images. Fur-
ther, in developing OCT radiomics, one may use an
expanded set of features specific to this modality. That is, in
addition to the features commonly used in MRI and CT
OCT data post-
processing yield various other important tissue characteris-

images analysis, results of various
tics such as optical properties [8], polarization metrics [9],
biomechanics [10, 11] and microvasculature
[12-15].

mechanisms OCT approaches, microangiographic visualiza-

visualization Among these alternate-contrast-
tion seems the most appropriate for use in radiomics, since
several quantitative characteristics can be readily extracted.
These include vessel tortuosity, distributions of total vessel
length, thickness, area or coverage percentage, fractal
dimension of the microvascular tree, and others [16,
17]. Some of these characteristics are believed to be corre-
lated with various pathological conditions, including differ-
ent stages of cancer development [16]. Complementary
usage of OCT-based microangiography with structural-
image-based tumor classification and/or segmentation will
enable such quantification of microvascular networks inside
and outside tumor volume separately, thus further increasing
the potential number of features which can be used in multi-
modal OCT radiomics approach.

In recent years, several OCT classification algorithms
have been developed, based primarily on OCT structural
images. These utilize various image characteristics, such as
intensity, local attenuation coefficient, image textures and
so on, and allow classification of morphologically different
structures in sites ranging from skin [18] to retina [19] and
arterial wall [20]. In this study, an alternate tissue classifica-
tion based on structural OCT image characteristics was
developed, to distinguish between normal and tumor tissue
of murine ear implanted with mouse colon carcinoma
CT-26 cells. These structural-based classification results
were then combined with micro-angiographic maps
obtained with M-mode-like speckle OCT
[14]. Thus, each detected vessel segment was labeled based
on whether it passed through the 3D tumor structure as
determined from the structural OCT analysis, or alterna-
tively passed through the normal tissue regions surrounding
the tumor.

This study was thus comprised of 3 stages: (1) building
the classification model based on structural OCT with histo-
logical input; (2) resultant model evaluation and indepen-
dent validation with exogenous-label fluorescence
microscopy, and (3) complementary usage of classification
model and microangiography results from the same OCT
dataset.

variance

Having validated the structural classification approach
and quantified its performance, its combination with OCT
micro-angiographic data was explored. 3D segmentation of
the microvascular maps into “tumor” and “normal” vessels
was performed according to their spatial co-localization
with the structurally delineated corresponding volumetric
tissue regions.

2 | EXPERIMENTAL

2.1 | Animal model

The animal study was approved by the Research Ethics
Board of the Nizhny Novgorod State Medical Academy
(REB protocol 14, approved December 10, 2013). Thirty
BALB/C mice were used. Mouse colon carcinoma CT-26
cells were injected intradermally into the auricle at a dose of
2 X 105 cells per 20 pL of PBS, as described previously
[21]. The tumor grew quite superficially, mostly confined
within the epidermis or slightly penetrating it. The resultant
tumor structure was clearly visible on OCT in its entirety.
Further, the auricle tissue forms well-developed blood flow
network, making this preclinical mouse ear + mouse tumor
a convenient biological model for multi-modal (microstruc-
tural and microvascular) OCT investigations [21, 22].

2.2 | OCT setup and angiography processing

A spectral domain (SD) OCT setup with superluminiscent
diode light source at a central wavelength 1300 and 100 nm
bandwidth (axial resolution of 10 pm in air) was utilized.
Lateral resolution was equal to 15 pm. Scanning system
was able to perform 2D lateral scanning, thus providing 3D
OCT datasets (2 lateral dimensions plus depth) with an
acquisition rate of 20 000 spectral A-scans per second.
OCT data for microangiography were acquired from
2 X 2 mm scanning range, with a dense A-scan pattern of
32 768 A-scans per B-scan. From this data, 3D microvascu-
lar network was extracted using high-pass filtering of B-
scans via M-mode-like (MML) OCT [14]. Because classifi-
cation model proposed in this study is intensity based (see
below) the actual power of OCT setup was controlled by
measuring reflectance from OCT interferometer reference
arm and kept constant during the experiments.

2.3 | Expert labeling of OCT tumor images

One hundred and fifty OCT cross-sectional images from
30 animals were labeled by a histopathologist through com-
parison of OCT and histological images (Figure 1A,B). At
this stage of the research, tumor and normal tissue (epider-
mis, dermis and cartilage) were labeled as “tumor” and
“normal” (Figure 1C). Only unambiguous morphological
structures were categorized. The expert-labeled images were
divided into 2 groups: 100 256 Xx 256 pixels cross-sectional



MOISEEV ET AL.

Journal of 30f9

PHOTONICS

FIGURE 1

Cross-sectional OCT image labeling and tumor/normal tissue segmentation process. A, OCT-image of a CT 26 on ear mice. B, Histology

image taken on the same day. Expert labels represent approximately same regions in both images. Area marked with “N” represents “normal” tissue, “T”

represents “tumor.” Note that only parts of tomograms which display unambiguous morphological structures were labeled by the expert

images from 20 animals were used for classification model
training, and 50 images from 10 animal were used for its
evaluation. Although these are not large numbers, our anal-
ysis is pixel-based and so the data content is significant—
every image in the contained ~3000-5000 labeled pixels,
thus ~400 000 entries in training set and ~200 000 entries
in the evaluation set. The training set was further divided
into ~350 000 entries training subset and ~50 000 entries
validation set we used to find optimal values for classifica-
tion method hyperparameters. Images for training and test
sets were obtained by downsampling MML OCT B-scans,
provided by our setup. B-scans selected for expert evalua-
tion were separated not less than 150 pm from each other.
Downsampling and selection of separated images were per-
formed to decrease correlation for training and evaluation
datasets between neighboring A-scans and consequently
neighboring data-points, thus further increasing information
content in the dataset

2.4 | Classification model

To distinguish between normal and tumor tissues of CT-26
in structural OCT images, a supervised classification model
was built. The model comprised of 2 major steps: firstly a
features set was introduced such that for every pixel in an
OCT structural image, a feature vector was defined; sec-
ondly, based on these feature vectors, pixel classification
was performed. At the learning stage, features were calcu-
lated for pixels in the images from training set, and super-
vised classification method was to build the
classification model. The prediction stage contained an
additional stage of image thresholding. Since many pixels
in a typical OCT image may represents empty space (eg,
above tissue surface or below depth of imaging), these were
rejected from the analysis by 2-step operation. In the first
step image was hard-thresholded using pre-evaluated aver-
age noise level plus triple noise standard deviations as a
threshold. Then in the thresholded images isolated con-
nected regions which contains less than 10 pixels were
eliminated as well with mathematical morphology opera-
tions. The morphology closing operation was then applied
to the part of the thresholded image above zero, and only
pixels from non-zeros regions of the resulting mask were
taken to further analysis. A feature vector was built for
every such pixel, and the classification model was applied

used

to these vectors, yielding a resultant label (tumor or normal)
only for pixels above the intensity threshold.

The most easily accessible and arguably most
information-rich component of an OCT structural image is
its signal intensity in each pixel. We thus chose to work
with logarithmic values of cross-sectional signal distribu-
tions provided by our OCT setup to generate a robust fea-
tures vector, although the developed methodology can be
easily extended to accommodate other aspects of
information-rich OCT input data. However even properly
handling intensities is challenging, because the signal value
in each pixel is defined not only by the optical properties of
the corresponding tissue but the optical properties of all tis-
sues above, local light fluence details, and by the speckle
noise inherent in OCT. Thus to unambiguously describe
local tissue characteristics, brightness of a specific pixel
alone is insufficient, and OCT signal distribution in the
vicinity of the pixel must be considered. For the “vicinity,”
we chose 11 pixels above and 12 below the given pixel
along the same A-scan (more on this choice below), thus
forming an A-scan length window of 24 pixels. The choice
of 1 dimensional (A-scan) segment as the “fundamental
unit” in the ensuing analysis is logical, as all 2D or 3D
OCT images are built up of spatially adjacent A-scans.
Instead of using these 24 pixel intensities directly as a fea-
tures set, we decomposed them into orthogonal basis vec-
tors, and the first 8 coefficients were kept as a features set
(more on this choice below). With properly chosen basis
vectors set, this step (decomposition and data reduction) can
minimize the influence of noisy local intensity changes
while keeping/enhancing informational differences between
A-scan windows.

To construct the orthogonal basis set, Principal Compo-
nents Analysis (PCA) was used [23]. This method provides
complete set of orthogonal bases (principal components),
with the first principal component having the largest possi-
ble results variance, the second the second-largest variance
and so on. Input for PCA consisted of 1 000 000 randomly
selected 24-pixel A-scan windows from about 2000
256 x 256 pixels OCT structural images (20 animals, ~100
images separated by 20 pm per animal). Images were
obtained by downsampling MML OCT B-scans, provided
by our setup. Downsampling and random selection of data
points were performed to ensure absence of correlation
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between any 2 vectors from this auxiliary dataset. Resultant
set of principal components (as mentioned we retained 8)
was used to build features vectors for the classification
model below.

A popular state-of-the-art method of random forest trees
classification was chosen [24]. At the learning stage, this
method takes a set of feature vectors as input and corre-
sponding set of outputs (expert labels in our case), and
builds a set of decision-trees classifiers. While building each
particular decision tree, the algorithm picks a random subset
of input vectors and random subset of the features vectors.
This random picking approach avoids the common decision
trees problem of overfitting [24]. At the prediction stage,
the algorithm takes an input vector and applies all built
decisions trees to it. The vector gets the label (tumor or nor-
mal in our case) which is predicted by the majority of the
trees composing the classifier. The part of the decision trees
giving the particular label for the features vector can be con-
sidered as a probability of this vector to have that particular

PCA features
vectors

A-scan patches decompositions

label [24]. In this study, such value for “tumor” label was
used as a probability of a given pixel to represent a tumor,
ranging for 0 to 1. The overview our OCT feature building
and classification processes is displayed in Figure 2. Note
that as all processing is A-scan based and SD OCT system
records A-scans independently, the whole processing does
not depend on system scanning range. Because classifica-
tion model proposed in this study is intensity based, in order
to apply the classification model trained on dataset obtained
from one OCT setup to the dataset obtained on another
OCT setup, the additional preprocessing step matching
intensity histograms of both datasets should be performed.

2.5 | Classification model hyperparameters
adjustment

The proposed classification method has 2 types of hyper-
parameters. Firstly, the feature vector parameters such as A-
scan window length and number of retained coefficients
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8 principal components) were used as a
features vector in the developed
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from A-scan window principal components decomposition.
Secondly, classification model (ie, random forest classifier)
parameters such as number of decision trees in the forest,
the number of features to consider when looking for the best
split, the maximum depth of the decision tree, the minimum
number of samples required to split an internal node of the
tree, the minimum number of samples required to be at a
decision tree leaf node. To find the optimal set of these
parameters we evaluate the performance of the model
trained on the training subset on the validation subset using

FIGURE 3
OCT-image of a CT 26 on ear mice, (B) correlated histology,
(C) Prediction of classification algorithm: Map of tumor probability;

Cross-sectional OCT images pixel classification process. A,

(D) En face projection of the tumor region as described in Section 2.6.
Values in (B) and (C) from O to 1, as per color-bar

IOPHOTONICS

area under receiver operating characteristic (ROC) curve
[25] as a metric. First we set classification model parameters
to be 10 decision trees with unlimited depth which use 3 ran-
domly selected features from the feature vector and mini-
mum number of samples required to split an internal node
of the tree and minimum number of samples required to be
at a decision tree leaf node both equal to 1. Then we conse-
quentially tuned A-scan window length and number of
retained coefficients from A-scan window principal compo-
nents decomposition one after another while holding the
second parameter constant. After first estimation for feature
vector parameters were found, we tuned -classification
model parameters in the same fashion. Then we repeated
the process for feature vector parameters using adjusted
classification model parameters. The process was repeated
until no improvements were made by independently tuning
single model parameter. The resulting set of the hyperpara-
meters was: A-scan window length is equal to 24, number
of retained coefficients from A-scan window principal com-
ponents decomposition is equal to 8, number of decision
trees in the forest is equal to 11, the number of features to
consider when looking for the best split is equal to 3, the
maximum depth of the decision tree is equal to 8, the mini-
mum number of samples required to split an internal node
of the tree is equal to 17, the minimum number of samples
required to be at a decision tree leaf node is equal to 8.

2.6 | Tumor en face projection

For display convenience, en face projection of classification
results were also introduced (note that this is different from
“conventional” C-scan en face structural OCT displays).
The standard in OCT-based microangiography maximum
intensity projection (MIP) is not applicable in this case, as
every single misclassified pixel in A-scan will display the
whole A-scan as a “tumor” in MIP. Thus the modification
of other popular choice in 2D projection of 3D vessel net-
work was chosen: the mean intensity projection. The mean
was taken after signal thresholding from probability-to-be-a-
tumor value from along every A-scan. In the current study
this distribution is referred as “tumor en face projection”
(Figure 3C).

2.7 | Classification model evaluation

After classification model was built as per Section 2.4, 2.5
it was applied to the expert-labeled images from animals
which were not involved in the model learning stage and
tumor classification labels made by histopathologist who
examined both OCT and histological images were compared
with the probability of these pixels to be a tumor as pre-
dicted by the proposed algorithm. As a metric of classifier
performance, area under ROC curve [25] was used.
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2.8 | Independent technique validation—comparison
with fluorescence

Since experts labeled only those regions of OCT images
which they reliably identified as normal or tumor tissues,
transition zones were problematic because no unequivocal
expert labeling is possible there. Thus the performance of
the classifier on the borders of pathology requires additional
evaluation. To enable this, a mouse with genetically
encoded fluorescent protein KillerRed, expressed by CT-26
murine colon carcinoma, was imaged using both fluores-
cence microscopy and OCT. Both images were acquired at
14th day after tumor cells inoculation. Every cross-sectional
structural OCT image, forming 3D OCT dataset, was pro-
cessed with proposed algorithm. Since the fluorescence
microscope used in this study is only capable of 2D depth
integrated image acquisition, visible classifier borders of the
tumor on the 2D en-face OCT projection (according to
Section 2.6) were compared with KillerRed fluorescence
images.

To increase OCT field of view, 2 consecutive OCT spa-
tially overlapping datasets were acquired and aligned using
OCT-based angiography images.

Tumor borders in both modalities (fluorescence and
classified OCT volumetric dataset) were obtained by split-
ting pixels in corresponding images in 2 clusters according
to their values (intensity in case of fluorescence image and
probability-to-be-a-tumor projection in case of OCT image)
using k-means algorithm [26]. The borders of the cluster
with higher average value were treated as tumor borders.

Aligning of en face OCT and fluorescence images was
done by superimposing vessels meshworks, visible in both
modalities. For blood vessels visualization with fluores-
cence, a fluorescein isothiocyanate (FITC) conjugated with

10
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FIGURE 4 ROC curve for proposed pixel classification method (area
under curve equal to 0.93). For probability of a pixel to be a tumor value
threshold 0.57 providing sensitivity equal to 0.84 and specificity equal to
0.83 was chosen for 3D tumor delineation

150 kDa Dextran was used and. Both KillerRed and FITC
fluorescence were imaged on the same microscope (Axio
Zoom V16, Zeiss, Germany) with the same position of the
tissue, by changing respective filter sets.

3 | RESULTS AND DISCUSSION

3.1 | Classification model evaluation

In Figure 4 ROC curve for the obtained classification results
vs expert labels for the test data is shown. ROC illustrates
the performance of a classifier as its discrimination thresh-
old (probability of pixels to be a tumor in the case of pre-
sent study) is varied. The curve is created by plotting the
true positive rate against the false positive rate at various
threshold settings. For the described tumor vs normal tissue
classifier, the area under the ROC was equal to 0.93. This
encouragingly high number can potentially be improved fur-
ther if we account for “co-localization,” that is the tendency
of similarly labeled pixels to cluster together or use addi-
tional OCT image modalities (eg, attenuation coefficient
distribution, OCT image in cross-polarization, etc.) for fea-
ture construction.

Analysis of the ROC curve allows selection of the “opti-
mal” threshold value for the continuous classification result
in order to build binary classification, that is value provid-
ing balance between classification model sensitivity and
specificity. For the obtained classification threshold value
was chosen equal to 0.57, which provides binary classifica-
tion sensitivity equal to 0.84 and specificity equal to 0.83
(see Figure 4). This “optimal”
tumor border delineation.

As seen from Figures 3C, 6E,F, the majority of false
positive classifications were originated from lower intensity
regions. This is the consequence of the fact that in lower
intensity regions signal-to-noise ratio is lower and classifi-
cation outcome is largely affected by noise.

value was further used for

3.2 | Independent technique validation—comparison
with fluorescence

For independent technique validation en-face borders, of the
tumors obtained according to Section 2.6 from 3D volumet-
ric classification results were superimposed with fluores-
cence image of CT-26 murine colon carcinoma expressed
genetically encoded fluorescent protein KillerRed. The
results are shown in figure.

It should be pointed out, that the comparison of volu-
metric images obtained in both modalities would provide
less ambiguous results. However selected animal model
does not allow imaging of the tumor with scanning confocal
microscopy available for the authors since its imaging depth
does not allow imaging below the skin. Thus comparison of
2D images obtained with fluorescence microscopy and OCT
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FIGURE 5
and OCT and fluorescence images by
superimposing vessels meshworks (green—
vessels visible in fluorescence, red—

A, Alignment of fluorescence

vessels obtained by OCT angiography
processing). In purple en face projection of
OCT classification results is presented,
tumor visible in fluorescence channel is
presented in gray. B, Overlapping of tumor
projections visible in fluorescence and
obtained by the proposed OCT pixel
classification method. Having fluorescence
image as a ground truth cyan represented
true positive classification, red—false
negative and yellow—false positive. See
text (Section 2.8) for tumor images
binarization details. Note that some of the
false negative pixels inside the tumor
margins follow the large vessels. These
false negative classifications are result of
shadowing of the tumor in the OCT images
by shadows below the large vessels above
the tumor. As these shadowed regions were
below intensity threshold, they were
excluded from the classification thus
providing false negative pixels in en-face
projection

classification en face projection was chosen for proposed
classification technique validation. One should keep in mind
that different imaging depth for both modalities and differ-
ent position of the object relative to imaging device will
lead to border mismatch that does not evaluate classification
performance, thus both factors should be taken into account
in interpretation of the results. Since position of the object
relative to imaging device will affect angiography image as
well, the ability to overlay vessels projections, obtained
using OCT angiography and using fluorescence imaging
using only translation rotation and scaling will guarantee
conformity of the objects positions in both modalities which
was the case in the present experiment (see Figure 5A).
Equality of imaging depths was ensured by chosen model,
since imaging depth was primarily defined by ear thickness.

3.3 | Complementary usage of OCT angiography and
structural image classification

During tumor growth, intricate and complex microvascula-
ture is seen to develop and can be accurately visualized with
MML-OCT technique in 3D [21]. Combining these micro-
vascular maps with microstructural tissue classification
results can potentially provide more insights into the
normal-pathology transformations of the cellular and micro-
vascular tissue compartments, and their spatial inter-rela-
tionships. We thus proceeded to label the microvascular
network as spatially overlapping in 3D with tumor or with
surrounding normal tissue.

To enable accurate co-usage of labeled OCT structural
maps with OCT angiography, the microvascular networks

IOPHOTONICS

®) v 1 mm

from the latter were first binarized in 3D. Then each binar-
ized vessel, intersecting with an area where the probability
of a voxel belonging to a tumor exceeded the threshold
defined in Section 3.1 was marked as “vessel inside tumor
region”; otherwise it was marked as “vessel inside normal
region.” The probability threshold value was chosen to pro-
vide balance between sensitivity and specificity of the pro-
posed classification method. The resultant color-coded 3D
results are presented in Figure 5C,D. Note the interesting
difference that this analysis reveals—otherwise similar-
looking microvascular maps of 2 different tumor networks
(Figure 5A,B) now show many more “tumor’” vessels in the
second case compared to the first.

All vessels were skeletonized and their total length was
calculated. Quantifying this newly revealed information, we
calculate similar overall vessel length for the 2 cases (differ-
ence between 2 cases was equal to 1.3%), but significant
difference in the “tumor compartment” vessel length (differ-
ence between 2 cases was equal to —40%). Further analysis
of the 2 microvascular networks (“normal” and “tumor”),
across and within different animal images, will quantify the
metrics of vessel thickness, volumetric density, tortuosity,
fractal dimension and so on. The resultant numbers be used
as additional information-rich input data to derive advanced
features vectors for OCT radiomics.

4 | CONCLUSION

The proposed tumor classification method provides reliable
results for segmenting tumor regions from normal tissues on
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0.5 mm

0.5 min

OCT structural images. For probability-to-be-a-tumor value
specificity and sensitivity of 0.84 and 0.83, respectively,
can be reached. These promising values of specificity and
sensitivity will enable one to calculate OCT image statistics
inside and outside tumors (eg, intensity histogram character-
istics, image texture metrics and other structural image fea-
tures of potential interest to the emerging OCT radiomics
approaches). Complementary usage of classification results
with OCT-derived and co-registered microvascular maps
similarly allows calculation of numerical characteristics of
vasculature networks inside and outside tumor regions sepa-
rately. These may be used to study differences between dif-
ferent otherwise similar in
appearance, and to further enhance the quantifiable data
content of multimodal OCT for radiomics-like analysis.

microvascular networks

0.75

FIGURE 6
OCT angiography and structural tumor/
normal tissue classification. A and B,
MML-OCT MIP microvascular images
0.25 from 2 different CT-26 colon tumors

Complementary usage of

0.5

growing in a mouse ear. Note the similar
visual appearance of the 2 resultant

0 microvascular networks. C and D, Cross-
sectional images from the OCT volume
used to construct microvasculature images
from (A,B). E,F, Classification results of
C,D. Note the misclassification of the
vessels shadow in E. This shadow had not
been excluded from the analysis in
thresholding step leading to the
misclassification. G and H, Correlated
histology for (E,F). I and J, Same images
as from (A,B) but now color-coded as co-
localized within structurally-segmented
tumor tissue (red) or within normal tissue
(green). Note that the second tumor is seen
to contain many more “tumor” vessels
compared to the first (difference of 40%, as
discussed in the text)

In addition to using the microvascular data with the
microstructural classification results as demonstrated, com-
plimentary OCT information (eg, polarimetric and elasto-
graphic metrics) can be straightforwardly introduced into
the proposed framework as well. By calculating the pro-
posed feature vector for each OCT contrast modality and
combining, an enhanced feature vector can be constructed
and introduced into the model learning and predicting pro-
cesses. This may have relevance in the emerging field of
radiomics as applied to OCT.
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