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Abstract. In compressional optical coherence elastography, phase-variation gradients are used for estimating
quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans,
one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the
allowable strains to fairly small values <10−4 to 10−3, with the caveat that such weak phase gradients may
become corrupted by stronger measurement noises. Here, we extend the OCT phase-resolved elastographic
methodology by (1) showing that an order of magnitude greater strains can significantly increase the accuracy of
derived phase-gradient differences, while also avoiding error-phone phase-unwrapping procedures and mini-
mizing the influence of decorrelation noise caused by suprapixel displacements, (2) discussing the appearance
of artifactual stiff inclusions in resultant OCT elastograms in the vicinity of bright scatterers due to the amplitude-
phase interplay in phase-variation measurements, and (3) deriving/evaluating methods of phase-gradient esti-
mation that can outperform conventionally used least-square gradient fitting. We present analytical arguments,
numerical simulations, and experimental examples to demonstrate the advantages of the proposed optimized
phase-variation methodology. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.11.116005]
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1 Introduction
Following the promising extraction of various stiffness metrics
from ultrasound scans of biological tissues (e.g., elastographic
visualization of shear-modulus distribution), development of
various elastographic techniques has been initiated in other
areas of biomedical imaging (see review1), including optical
coherence tomography (OCT).2 The increasing interest in
using OCT for visualization and quantification of shear/
Young moduli distribution stems from the fact that other bio-
physical tissue parameters, such as optical scattering properties
or ultrasound velocity, usually demonstrate a lower range of
variations.2,3 Furthermore, compared with parameters typical
of medical ultrasound and most other imaging techniques,1 char-
acteristic OCT spatial scales are an order of magnitude smaller
(typically 1 to 2 mm in depth and several millimeters in the
lateral direction, with spatial resolutions of 5 to 20 μm). This
higher resolution (albeit with smaller imaging depths) is
advantageous for elastographic applications, for example, for
obtaining better accuracy of detecting boundaries of tumors
(known to possess higher stiffness3,4) and in moving toward
“optical biopsy” to better discriminate pathological and normal
tissues ex-vivo5,6 and in vivo.7 Another emerging OCT elastog-
raphy area is ophthalmology,8 where OCT imaging capabilities
are well suited to the spatial scales of eye structures; in fact,

multimodality OCT (spatial, angiographic, polarimetric) is now
widely accepted in ocular care as a standard diagnostic tool.9–11

Starting from seminal works by Schmitt2 by analogy with
strain mapping problems typical in mechanical engineering
applications12,13 and medical ultrasound,1 where correlational
processing of deformed speckle patterns is successfully applied,
different variants of correlational processing methods have been
considered in OCT-based elastography.14–19 However, the adap-
tation of digital image correlation methods to OCT has not
been very successful, primarily due to the interferometric
nature of speckles in coherent OCT images and the resultant
additional effects of pronounced speckle decorrelation that are
not common in photographic images (see, e.g., Refs. 20 and 21).
In view of this, phase-resolved measurements have been
attracting ever increasing attention in OCT elastography, where
the phase variations between compared A-scans or B-scans
intrinsically exhibit better tolerance to decorrelation related to
deformation-induced speckle blinking and boiling caused by
mutual motion of scatterers located within the coherence
volume.22 The measured phase variations can then be used
for calculating the axial displacements of the scatterers23–26 in
elastographic mapping or for Doppler shifts’ estimation in
angiographic imaging.22,27,28 However, in OCT elastography,
one is often interested in local strains rather than total displace-
ments of scatterers. This way, using the determined differences
in strains produced by the OCT probe pressed onto the inspected
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biological tissue, the spatial distribution of the tissue stiffness
can be visualized. This is the basic principle of compressional
optical coherence elastography (OCE).

Usually, the phase data are somewhat corrupted by intrinsic
measurement noises of the OCT scanner and decorrelation
noises caused by displacements of scatterers in the deformed
tissue. In particular, in compressional OCE, the compression-
induced strains cause inhomogeneous displacements that
depend on depth. The resultant strain-produced displacements
within a given OCTA- or B-scan may vary from subwavelength
values to those exceeding not only wavelength, but pixel scale as
well (Fig. 1). Conventional phase variation measurement meth-
ods compare phases from pixels with the same coordinates in
the reference and deformed scans.23,24,26 This is reasonable in
regions of fairly small displacements, where the compared
pixels contain the same scatterers in the referenced and strained
scans, so that the phase variations are directly related to the scat-
terer displacements. However, in scan regions corresponding to
suprapixel displacements, the same location in the two com-
pared scans may correspond to different scatterers, thus the
phases of the two OCT signals can be unrelated, their difference
essentially yielding a random value. Therefore, “regular” phase
variations in regions of suprapixel displacements become
strongly masked by such displacement-produced decorrelation
effects, as illustrated in Fig. 1.

The straightforward way of reducing such displacement-
induced decorrelation noises is to choose sufficiently small
strains (say, below 10−3) that produce limited subpixel displace-
ments over the entirety of compared scans. However, even this
may not improve the strain-estimation accuracy: strains are
proportional to phase-variation gradients and for small strains,
the small phase gradients become significantly corrupted by
the measurement noises of the system. The latter can be reduced
by applying auxiliary periodic small-amplitude actuators to
enable averaging of compared OCT scans, but this is probably

impractical for most in vivo OCE applications based on hand-
held-probe operations. Therefore, one faces a dilemma—on the
one hand, needing to ensure small displacements to avoid differ-
ent scatterer cross talk in original-deformed scan comparisons
(as per Fig. 1); but on the other hand, these resultant small
phase differences may be overwhelmed by measurement noises,
thus reducing the accuracy of phase-gradient estimations.

Alternatively, a moderate increase in strain (say, from ∼10−3
up to ∼10−2, for which pronounced strain-induced speckle
“boiling” does not yet occur) may strongly reduce the influence
of additive measurement noises (e.g., those of the photodetec-
tor). However, stronger strain-induced displacements will cause
strong cross-talk of the displaced scatterers, as shown in Fig. 1,
thus masking displacement-induced decorrelations. Another
larger-strain complication is the effects of phase wrapping with
increasing measurement depth, thus making the determined
phase difference—displacement relationship ambiguous and
necessitating error-prone unwrapping procedures.

To reconcile such contradicting requirements while retaining
the advantages of using larger strains up to ∼10−2 and avoiding
the abovementioned complications, we develop a method in
which the suprapixel displacements in deformed scans are
tracked to ensure comparison of scattered fields corresponding
to the same scatterers even if they move to the neighboring pixel
and their displacement significantly exceeds the wavelength.
We demonstrate that despite multiple phase wrapping and strong
decorrelation noise arising if using the straightforward pixel-to-
pixel comparison, the proposed phase gradient method yields
significantly better accuracy and better tolerance to measure-
ment noises compared to the limiting small-strain measure-
ments. We emphasize that the proposed way of using larger
strains (up to the onset of significant speckle blinking) appears
attractive for practical compressional elastography based on
hand-held probe operation in probable clinical conditions.
Note that the application of periodic straining and use of
time-averaging for improving SNR may also be possible but
is arguably more challenging.

2 Phase Comparison for Supra-Pixel
Displacements Between Native and
Deformed OCT Scans

To demonstrate phase comparison for complex-valued OCT
scans suitable for suprapixel displacements of scatterers, we use
our model29 according to which complex-valued amplitudes of
pixels in a one-dimensional (1-D) A-scan formed by spectral-
domain OCT can be written as follows:
EQ-TARGET;temp:intralink-;e001;326;243
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where q is the pixel number within the A-scan, zq is the coor-
dinate of the q’th pixel center, k0 is the central wavenumber of
the optical wave in the tissue, zj is the position of j’th scatterer
and Aj is its scattering amplitude, and H is the imaged depth.
Index n is the number of the optical spectral components,
the total number of which is typically on the order of several
hundreds. The function SðnÞ describes the shape of the optical
spectrum centered around the central wavelength λ0 as specified
by its wavenumber k0 ¼ 2π∕λ0.

Fig. 1 Schematic elucidation of the origin of the displacement-
induced “decorrelation noise” effects arising in phase measurements
when the same pixels in the original and deformed scans are directly
compared. Upper panel schematically represents pixelated images of
two neighboring localized scatterers in the original OCT scan, and
the lower panel shows their displaced positions due to pixel-scale dis-
placement of the scatterers (at a certain depth corresponding to the
one-pixel shift to the right). It is clear that direct comparison of pixels
with the same coordinate in the reference and deformed scans
(marked by the vertical arrow) is contaminated by cross-talk between
neighboring scatterers with unrelated initial phases. Consequently,
the determined phase difference may yield a random value even in
the absence of any other sources of measurement noises (the actual
new position of scatterer 2 now corresponds to the neighboring pixel
marked by the inclined arrow).
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To demonstrate the phase variations caused by the axial dis-
placement of scatterers, let us first consider a single subwave-
length scatterer with initial coordinate zj that is displaced by Δz.
For simplicity and brevity, we assume that the total number of
spectral harmonics N þ 1 is odd [i.e., in Eq. (1), N is supposed
even without loss of generality], whereas the spectrum shape
SðnÞ is rectangular and symmetrical around the center. Then,
performing summation in Eq. (1), the 1-D signals Að1ÞðqÞ
and Að2ÞðqÞ in the initial and Δz-displaced pixelated scans are

EQ-TARGET;temp:intralink-;e002;63;653Að1ÞðqÞ ¼ Aj expði2k0zjÞT½gðΔz ¼ 0Þ; N�; (2)

EQ-TARGET;temp:intralink-;e003;63;621Að2ÞðqÞ ¼ Aj expði2k0zjÞTðg; NÞ · expði2k0ΔzÞ; (3)

where g ¼ 2πðzj − zq þ ΔzÞ∕H and the quantity Tðg; NÞ (axial
point-spread function) is real:

EQ-TARGET;temp:intralink-;e004;63;571Tðg; NÞ ¼ sin½gðN þ 1Þ∕2�
sin½g∕2� : (4)

To clearly interpret these equations, we also assume that
initially, the scatterer was located in the middle of the q’th
pixel, so that zj − zq ¼ 0. Then it is clear that the complex-
valued amplitudes given by Eqs. (2) and (3) differ by the
phase factor expði2k0ΔzÞ that “does not depend” on the pixel
number. This means that if we compare the phase of the pixel
number q corresponding to the initial position of the scatterer
with the phase of its image in the displaced position, then we
can take either the same q’th pixel, or neighboring ones
q� 1 or q� 2 (or even more distant pixels) without affecting
the phase difference given by the factor expði2k0ΔzÞ. Certainly,
if the scatterer is not isolated, it becomes necessary to choose the
most appropriate pixel in which the particular tracked scatterer
dominates in amplitude over contributions from other scatterers
(as we show below, most appropriate pixels do not necessarily
coincide with the initial position of this scatterer). Next, since
the factor Tðg; NÞ is real, its phase does not continuously depend
on the displacement Δz, although the factor Tðg; NÞ can change
its sign if Δz exceeds the pixel scale or the compared signal
in the displaced image is taken from pixels q� 1, even if the
scatterer remains within the initial q’th pixel. Such a change of
sign of Tðg; NÞ corresponds to an abrupt change of the phase by
π rad. However, even if such a stepwise change happens for
the phase itself, this does not affect the “phase gradients” that
are estimated to evaluate strain.

The particular representation of Eq. (4) for the factor Tðg; NÞ
is suitable for a rectangular spectrum shape SðnÞ, whereas for a
smoother and more realistic (and likely effectively narrower)
spectral shape, the sign may remain constant or may flip at a
distance greater than one pixel. In any case, the phase change
by a constant value does not affect the phase gradient that is of
primary interest for estimating strain in elastographic applica-
tions. Therefore, even if for �1 pixel, the function Tðg; NÞ
changes its sign, this fact can easily be verified by comparing
the phases of the reference scan and the same scan shifted by one
pixel (in image processing), so that if necessary, this effect can
be readily taken into account. In other words, it can be said that
around a single scatterer, there is a kind of “frozen phase-varia-
tion hat” described by the real-valued function T½gðΔz ¼ 0Þ; N�
for the initial position and T½gðΔz ≠ 0Þ; N� for the displaced
position, so that the phase difference between any pixels within
these “hats” is described by the same phase factor expði2k0ΔzÞ.

Therefore, as schematically illustrated in Fig. 1, comparison
of phases between the q’th pixel in the reference image can be
made using not only the same pixel q in the second scan but also
pixels q� 1 or q� 2 (that better correspond to the position of
the maximum of the “hat” in the displaced images for tracking of
different methods can be used as discussed below). This pixel-
scale tracking of the new positions of the scatterers can strongly
reduce uncontrollable errors due to various noises (both decor-
relation ones and noises from other sources). Indeed, it is clear
from Fig. 1 that the errors related to leakage (cross-talk) of the
fields from neighboring scatterers can be significantly reduced
if instead of pixel q in the second image, one considers the
neighboring pixel corresponding to the displaced position of
the tracked scatterer, say, (q� 1)’th pixel. This means that
even for suprapixel displacements, the influence of the displace-
ment-induced decorrelation noise can be reduced down to the
much lower level typical of subpixel displacements. At the same
time, phase gradients (and, therefore, strains) can easily be made
an order of magnitude greater than for the commonly used small
subpixel (and even subwavelength) displacements, so that
one can strongly reduce the strain-estimation errors related to
additive measurement noises (e.g., thermal noises in the photo-
detector). Thus, somewhat paradoxically, despite an unknown
number of wrapped phase periods for suprapixel displacements,
one can accurately measure strains by estimating strain gradients
over relatively small depths intervals (say, ∼10 to 20 pixels)
along A-scans with very high tolerance to noises, as demon-
strated in Ref. 30. The above-mentioned property of the “frozen
phase-variation hat” around the maximum of the point-spread
function Tðg; NÞ enables one to extend the range of measurable
strains up to ∼10−2, relative to maximal strains of ∼10−4 to 10−3
that limit conventional pixel-to-pixel phase comparison meth-
ods. Such an extension of the strain range to ∼10−2 is sufficient
to encompass the entire strain range over which OCT scans
maintain sufficient similarity at a pixel-scale level; for strains
>10−2, OCT images become strongly corrupted by speckle
blinking and “boiling” caused by sufficiently strong mutual dis-
placements of scatterers located within the same pixel; detailed
discussions of similarity/difference between displacement- and
strain-induced decorrelation of OCT scans can be found in
Refs. 17, 20–22, 29, 30.

Returning to Eqs. (2)–(4) obtained for a rectangular spectrum
with the odd total number N þ 1 of optical spectral components
symmetrically located around k0, one can easily see that for even
total number N of spectral components (for which there is no
central component k0), the same trends hold. That is, the func-
tion Tðg; NÞ remains real, and the only difference is that the
central wavenumber in the “rapid” phase factor expði2k0ΔzÞ
becomes slightly renormalized, k0 → k0 þ π∕2 H, because of
the absence of a “genuine” central component. For smooth spec-
tral shapes with decreased spectral amplitudes at the spectrum
wings, Sð�N∕2Þ → 0, the difference between odd and even
numbers of harmonics becomes even much weaker and can be
ignored. Eventual slight asymmetries of SðnÞ result in only a
slight shift of the effective central wavelength (wavenumber k0)
and in a somewhat modified shape of the real-valued Tðg; NÞ.
Therefore, the considered property of “frozen phase-variation
hat” is quite general.

In the following sections, we illustrate these phase variation
properties by simulated and experimental examples, and dem-
onstrate how these can be efficiently used for improving the
phase-gradient estimate accuracy. In particular, the mentioned
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possibility of comparing phases in different pixels will be used
for making compensating shifts (in combination with additional
optimizations considered below); note that the entire developed
phase processing methodology is shown in a summary flowchart
in Fig. 9. However, before focusing on these optimizations, we
show that the effect of the “frozen phase-variation hat” should
be taken into account with care when estimating strains in the
vicinity of bright highly scattering image features, near which
artifacts in the form of false stiff inclusions may appear in OCT
elastograms.

3 Apparent Stiff Inclusion Artifacts near
Bright Scatterers due to Amplitude-Phase
Interplay in Optical Coherence Tomography
Phase Gradient Elastography

Although phase measurements in OCT are usually considered
as essentially decoupled from amplitude measurements, and
amplitude approaches are contrasted to phase ones, here, we
demonstrate some interdependence of the two. Specifically,
the above-discussed properties of phase variations in the vicinity
of displaced scatterers with significantly enhanced brightness
can result in the appearance of “stiff inclusions,” i.e., artifacts
in the form of apparent stiff regions in elastographic images
obtained by comparing complex-valued OCT scans in compres-
sional elastography. The physical origin of such artifacts is sche-
matically elucidated in Fig. 2, where a fragment of an A-scan
containing a bright scatterer near weakly scattering neighbors is
shown. Even if the displacement is produced by a fairly uniform
strain, the amplitudes corresponding to strong scatterers can
“leak” to neighboring pixels and significantly exceed the reflec-
tivity amplitudes of weaker scatterers located in those pixels.
Consequently, the apparent phase variation in the vicinity of
such a localized bright scatterer with initial position z0 is domi-
nated by its field [see Figs. 2(a) and 2(b)]. Correspondingly, the
phase variation in this group of pixels is almost identical and
equal 2k0dðz0Þ, because it is dominated by the displacement
dðz0Þ of the bright scatterer rather than by the actual displace-
ments of the local weaker scatterers. For the assumed uniform
strain s ¼ const. corresponding to the linear dependence of
displacements of scatterers on their coordinates, dðzÞ ¼ s · z,
the phase variations of the scattered fields should also represent
a linear function 2k0s · z, as shown by the dashed line in
Fig. 2(c), with the constant gradient (derivative) as shown
by the dashed line in Fig. 2(d). However, the masking field
of the strong scatterer with nearly constant phase variation
2k0dðz0Þ ≈ const. around its position z ¼ z0 forms a kind of
plateau in the phase-variation dependence [solid line in
Fig. 2(c)]. Correspondingly, the phase-variation gradient in
the vicinity of such strong scatterers remains very weak [see
solid line in Fig. 2(d)], erroneously suggesting the presence
of very stiff inclusions.

Experimental and simulated (based on model29) demonstra-
tions of this stiff-inclusion artifact are presented in Fig. 3.
In the experiments, we used a custom-built spectral-domain
OCT system operating at a central wavelength of 1.3 μm, with
axial resolution ∼8 μm in air, focus beam diameter ∼15 μm,
20-kHz rate of obtaining spectral fringes, with phase stability
better than ∼0.01 rad (i.e., sensitive to <1 nm displacements
of scatterers, as quantified in well-controlled vibration isolation
experiments with piezoactuators). However, in the examples
discussed here, the measurements were made without advanced
vibration isolation typical of biomedical labs, but rather under

typical “clinical-like” conditions with manual deformation of
samples. Thus, minimal measurable strains (usually on order
∼10−5) were influenced by basic factors, such as ambient vibra-
tions and photodetector noises, rather than being limited by the
ultimate phase stability of the scanner.

B-scan rate was 20 frames per second and the OCT probe
displacements were manually controlled with characteristic
interframe strains in the range between 10−4 and 10−2, which
made it possible to use a single pair of B-scans for estimation
of phase-gradients using an unconventional and robust method
that is discussed in Sec. 5 (see also the summary flowchart in
Fig. 9).

Figure 3(a) shows an experimental 2-D B-mode structural
scan of a three-layer phantom pressed from above by the OCT
probe; Fig. 3(b) shows the reconstructed strain map obtained
by comparing a pair of initial/deformed structural scans. The
phantom consists of a rather transparent and very stiff upper
plastic layer (I) pressed by the output window of the OCT probe,
the much softer and also relatively transparent layer (II), and a
scattering layer (III) of intermediate stiffness [3× stiffer than
layer (II)]. It is clear from the structural scan of Fig. 3(a) that
layer (III) is much brighter that other layers owing to its stronger
scattering. The bright interface between layers (II) and (III)
thus creates the above-mentioned “frozen phase-gradient” zone.
This yields an artifact in the form of an apparent stiff and
thin interface between layers (II) and (III) in the calculated
strain map shown in Fig. 3(b). Figures 3(c) and 3(d) show
the corresponding simulation results using our model that

Fig. 2 Elucidation of how the group of high-amplitude pixels around
a strong scatterer can result in the appearance of an apparent
stiff (∼undeformable) inclusion, even if the actual strain is uniform
(and the displacement of scatterers with initial coordinate is a linear
function). (a) and (b) the initial and shifted positions of such a strong
scatterer and several weaker scatterers in its vicinity are shown.
Dashed line with constant slope in (c) shows the unwrapped phase
shift expected for uniform strain; solid line shows how the group of
high-amplitude pixels around the strong scatterer with phase variation
leads to a plateau in the observed phase dependence. (d) The deriva-
tive (gradient) of the phase dependences in (c): dashed line for the
case of uniform strain without a strong scatterer, and solid line in
the presence of a localized strong scatterer is shown. To summarize,
interpixel cross talk near a strong scatterer masks the fields of weaker
scatterers nearby, thus forming a flat plateau in the depth dependence
of local phase variation. Correspondingly, the phase gradient (and
thus, the apparent strain) in the region of this plateau is nearly zero,
as shown in (d), suggesting the presence of a nonexistent stiff
inclusion.
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describes the speckle-pattern evolution in OCT images of
deformed tissues.29 Equation (1) of the present paper with N ¼
256 spectral components was used to generate B-scans contain-
ing 256 A-scans with input experimental system parameters, to
compare directly with real OCT images of the left panels of
Fig. 3; the optical and mechanical phantom properties used
in the simulation also correspond to the experiment. The strain
map thus obtained in Fig. 3(d) displays similar features to those
derived from the experimental measurements of Fig. 3(b),
importantly including the abovementioned effect of localized
false stiff inclusion in the vicinity of bright scatterers [at the
boundary between layers (II) and (III)]. Note that although
the layer boundaries in the model are flat, the reconstructed
strain map exhibits some undulations similar to the experimental
results [Fig. 3(b)]. The reason for this is due to the fluctuating
density of randomly distributed scatterers in the simulated scans.
Although we did not try to imitate the finer features of the real
structural scan (such as existence of aggregates of scatterers
surrounded by more transparent regions) and only roughly
simulated the gradual decay of the signal with increasing depth,
the similarity of the main features of strain maps in Figs. 3(b)
and 3(d), including the appearance of the false stiff layer near the
II-III interface, as well as artifactual stiff “teeth” penetrating
from the stiff layer (I) into the more deformable layer (II) near
scatterers with especially bright contrast, is encouraging.

Figure 3 clearly demonstrates that the “frozen phase-
gradient” effect near bright scattering boundaries can indeed
be rather pronounced and should be taken into account when
interpreting the elastographic strain maps obtained via phase-
gradient analysis. Note that normalization of the OCT-image
brightness does not help to eliminate this effect—even in the
normalized form, the optical field “leaking” from bright scatter-
ers to the neighboring pixels representing weak scatterers still
dominates, so that the “frozen phase-gradient” effects persist
even in the amplitude-normalized images. This artifact near
localized bright areas may thus be easily misinterpreted as
the existence of localized stiff inclusions (e.g., microcalcifica-
tion zones in tissues, and so on), so that OCT strain maps in
such circumstances should be interpreted with caution.

The magnitude of the “frozen phase-variation” effect
depends on such features as the optical spectrum shape (this
determines the degree of localization of the point-spread func-
tion for localized scatterers) and signal processing specifics (size
of the processing window that determines the area of smoothing
in the strain map, the particular method of finding the phase-
variation gradient, and so on). Some examples of how the
gradient-finding procedures affect the quality of the resultant
strain maps are given in Sec. 5.

4 Strain-Map Improvements with Pixel-Scale
Shift Corrections

OCE’s high robustness to additive noises was previously dis-
cussed for elastographic mapping,18 based on phase-gradient
analysis with corrections of pixel-scale shifts and interpixel
phase comparison. We now show further useful utilization
of this technique for improved phase-gradient estimation. In
particular, this pixel-scale compensation may help in handling
the displacement-induced decorrelation effects, recognized as
one of the main sources of error in phase-gradient estimates.30

These may be important in compressional OCT elastography,
for example, in the use of an intermediate layer of a reference
material with calibrated stiffness to estimate the stiffness of the
inspected tissue. We propose that this deformable layer can be
placed between the inspected biological tissue and the rigid sur-
face OCT probe, producing the tissue compression, as shown in
Fig. 4. This approach is somewhat similar to the “optical pal-
pation” method31,32 and the use of a “compliant sensor” for
quantification of tissue stiffness.5 In these works, the variation
in the entire thickness of the transparent calibrated layer is
directly measured to estimate its strain, in order to quantify
the underlying tissue stiffness or indirectly estimate its spatial
distribution (underlying biological tissue is not directly visible
on OCT). However, allocating most of the OCT scan depth for
directly visualizing the tissue is desirable, which could be
enabled by a thinner reference layer (∼100 μm); but for thin
layers, boundary effects (sticking at the contact with the rigid
OCT probe) can strongly distort its apparent stiffness, so their
use is impractical. Alternatively, here, the visualized biological

Fig. 3 Demonstration of the artifacts in the form of apparent stiff inclusions (indicated by arrows in
the strain maps) appearing near bright localized scatterers due to the “frozen phase-gradient” effect.
The three-layer sample has layers I = transparent and stiff, II = transparent and soft, and III = scattering
and medium stiffness. (a) Measured structural OCT scan of a three-layer phantom with strongly
increased brightness of the interfaces. (b) Strain map obtained by fitting the gradient of phase difference
between the reference and deformed scans. The “vector” method used here for gradient fitting is
described in Sec. 5. (c) Simulated structural image based on the model21 in which the distribution of
brightness of the scatterers is chosen to imitate the real OCT scan in (a), and the contrast in the stiffness
of the layers also approximates the real sample. (d) Corresponding strain map calculated from the simu-
lated image in (c). Note the similarity in the experimental (b) and simulated (d) strain maps, including the
appearance of artifactual stiff layers near the bright interface between deformable layers II and III and
localized stiff inclusions between stiff layer I and deformable layer II.
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tissue occupies the majority of the OCT scan, while the weakly
scattering but thick reference layer is only partially visible in the
upper part of the scan; this significantly reduces the artifactual
effect of possible layer sticking to the OCT probe (Fig. 4).
In this configuration, the strain map would represent the strain
values in both the inspected biological tissue and the partially
visible reference layer placed above the tissue. Due to the latter’s
deformability (that can have a millimeter-scale thickness that is
mostly located above the visualized region), the scatterers in
the visualized region can be displaced by a supra-wavelength
and even suprapixel scale between the initial and deformed
positions. In such a case, the situation corresponding to the
schematic of Fig. 1 can occur. Consequently, conventional com-
parison of phases of pixels with the same coordinates in the
reference and deformed scans may become altogether impos-
sible and/or give very noisy results due to cross-talk of the scat-
tered fields between neighboring pixels. However, judicious
integer-pixel correction of this displacement can significantly
improve the quality of the phase comparison and correspond-
ingly improve the accuracy of phase-gradient estimation.

We will discuss the application of a calibrated reference layer
elsewhere, and here, we demonstrate the usefulness of this pixel-
scale shift compensation procedure in Fig. 5, using the same
three-layer phantom examined in Fig. 3(a) but choosing another
experimental run. In these experiments, to eliminate undesirable
strong scattering at the interface between the upper stiff layer (I)
and the glass window of the OCT probe, glycerol was used as
immersing fluid, so that it could be squeezed out of the contact
area upon compression, resulting in a translational pixel-scale
displacement of the scatterers over the entire OCT scan. In
Fig. 3, a strong pixel-scale interframe shift was absent, but
for Fig. 5, we intentionally chose the case where the contact
between the OCT-probe surface was especially loose; thus,
the squeezing of the immersing liquid was stronger and resulted
in >one-pixel initial shift of the sample relative to the OCT-
probe surface. This way we imitate translational shift due to
squeezing of the reference layer shown in Fig. 4. Furthermore,
compression of the deformable layers (II) and (III) produced
additional pixel-scale displacements of scatterers in the lower
part of the scan. Such significant overall displacements result in
noticeable interscan decorrelation, necessitating some method
(s) of compensation in the strain estimation routine.

The manifestation of this decorrelation effect is illustrated in
Fig. 5(a), where the direct same-pixel comparison phase differ-
ence map between the reference and deformed images is shown,
using the conventional “rainbow” phase periodicity color map.
The decorrelation noise in the phase-variation map is very pro-
nounced and strongly masks the regular strain-induced phase
variations. However, these errors in the phase-variation estima-
tion can be significantly reduced by introducing compensating
shifts with a proper integer number of pixels. Figure 5(b)
shows the corresponding phase-difference map obtained with
application of such a correcting one-pixel shift of the entire
deformed image (a possible way of finding this correcting
shift is discussed at the end of Sec. 5). It is clear that the resultant
phase difference after correction becomes much less noisy.
Certainly, in both Figs. 5(a) and 5(b), the phase difference is
wrapped, so that its value over most of the scan is determined
with an uncertainty proportional to an integer number of peri-
ods. However, this uncertainty does not affect the estimation of
strain, because an unknown number of wrapped periods does
not prevent correct estimation of the phase gradient distribution.
Figures 5(c) and 5(d) show the corresponding strain maps with-
out [panel (c)] and with [panel (d)] initial translational one-pixel
displacement compensation of the entire scan, combined with
a cumulative strain-induced correcting shift applied for depths
greater than ∼150 px. It is evident that both the phase variation
map [panel (b)] and strain map [panel (d)] become significantly
less noisy due to the used pixel-scale compensation of the
displacements.

This difference is especially clear in the vicinity of the
weakly scattering deformable middle layer, where the strain
is >1% and decorrelation noise related to the mutual motion
of scatterers in the same pixel is especially strong. However,
application of the appropriate compensating shift in Fig. 5(d)
made it possible to obtain the strain map with quality compa-
rable to the experimental Fig. 3(b) (where was no initial supra-
pixel interframe shift causing strong displacement-induced
interframe decorrelation). We emphasize that the experimental
strain maps in Figs. 3 and 5 obtained by the proposed phase-
resolved method demonstrate fairly good results even for strains
>1% that cause noticeable speckle blinking and markedly
reduce the interframe correlation coefficient (even after applying
the compensating shift it remains ∼0.3 to 0.4 or less). By con-
trast, processing based on digital image correlation is much less
tolerant to speckle blinking and would be hardly helpful for
determining strains in such conditions.21,30 The applied “vector”
method of determining the phase gradient within the processing
window (16 × 16 pixels for Figs. 3 and 5), as well as its com-
parison with other methods of gradient estimation, is discussed
in greater detail and summarized in Sec. 5 (see specifically the
summary flowchart in Fig. 9).

5 Comparison of Phase-Gradient Estimation
Methods for Finding Strains and
Strain-Induced Supra-Wavelength Shifts

An important issue of the proposed optimization of phase-varia-
tion estimation is evaluation of the strain-induced displacements
to enable the needed compensation shifts. The conventional way
of displacement measurement in phase-resolved OCT is to
directly unwrap the phase-variation maps in order to find the
cumulative phase variation and the corresponding cumulative
supra-wavelength displacements. In principle, differentiation of
the so-found displacement with respect to the depth coordinate

Fig. 4 Schematic illustration how a calibrated reference (sensor)
intermediate layer with known stiffness properties (for quantification of
tissue stiffness values in compressional OCE) can produce pixel-
scale shift of the entire imaged tissue region. Besides this shift as
a whole due to compression of the reference layer (shown by three
arrows), scatterers in the strained tissue experience additional depth-
dependent displacements, as shown by the larger thick arrow. This
introduces strong displacement-induced decorrelation preventing
direct pixel-to-pixel comparison of the two scans; however, this prob-
lem can be handled by introducing compensating integer-pixel shift.
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can be used for finding strains, although this approach
often yields very noisy strain results, because conventional
unwrapping procedures are error-prone and subsequent differ-
entiation further enhances the inaccuracies in the displacement
reconstruction.

An alternative way to determine the cumulative strain-
induced displacements, originally proposed in Ref. 30, is
based on the direct estimation of strains via determining phase
gradients within a chosen analysis window starting from the
regions closest to the compressing surface (we assume that
this is the OCT-probe surface), where the strain-induced dis-
placements are minimal (subpixel) for all realistic compression
levels, thus their compensation is not necessary. Note that the
estimation of phase gradients automatically removes the need
for the error-prone spatial differentiation step that plagues con-
ventional methodologies. Then with increasing depth, the con-
tribution of the previously found strains in the upper part of the
scan is summed to determine the cumulative displacement at
the current depth. If this value exceeds 1∕2 px, 3∕2 px, 5∕2 px,
and so on, we then add a one-pixel vertical compensating shift

at the depth in question in the deformed image. As discussed in
detail in Ref. 30 and illustrated by numerous simulations (results
not shown), this method allows one to obtain very smooth
displacement fields even in low signal-to-noise environments.
Indeed, the noise tolerance of this cumulative approach is sig-
nificantly higher than that of conventional phase-unwrapping
procedures.

An important issue in the proposed strain-determination
methodology is the choice of the actual method of determining
the phase-variation gradient. This can be accomplished, for
example, using conventional procedures of least-squares
fitting24 of the depth-dependent phase-variation within a
selected size of the processing window. Before fitting the
slope of the axial (vertical) dependence of the phase variation,
for every horizontal row of pixels within the processing window,
it is useful to determine the average phase variation at that depth,
for example, using the Kasai estimator33,34 or a somewhat differ-
ent but analogous procedure described below in this section. The
least-square procedure24 of fitting the vertical phase-variation to
determine the phase-variation gradient [Fig. 6(a)] implies that

Fig. 5 Estimating the phase-difference between reference and deformed OCT images with and without
correcting pixel-scale shift [same phantom sample as in Fig. 3(a)]. (a) The phase-differencemap found by
straightforward comparison of pixels with the same coordinates in the reference and deformed images
when the latter experiences about a one-pixel translational shift (because of squeezing out of the immers-
ing glycerol between the OCT probe and sample surface). (b) The same phase-difference map after
correcting pixel-scale shift (both the initial one-pixel translational displacement of the entire scan is intro-
duced together with cumulative strain-induced one-pixel shift at the depths below ∼150 px). (c) and
(d) the corresponding strain maps without and with correcting shift, respectively, are shown. The appli-
cation of the correcting shift appears especially useful in the region of the weakly scattering and stronger
deformed intermediate layer, where the improvement is noticeable. Inset in (a) shows zoomed
(7 × 7 pixels in size) view of the interframe shift ∼2 px and shape distortion of one of bright speckles
in the initial structural image (the dynamic range of the color palette in the inset is 10 dB and conventional
interpixel interpolation is used).
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within the vertical size of the processing window, the fitted
phase is not wrapped. Since the window height is usually fairly
small (e.g., ∼1 to 30 px) compared to the entire scan of the order
of hundreds of pixels, this constraint of no phase wrapping
inside the window is much less restrictive than for no phase
wrapping over the entire scan depth (typically an order of mag-
nitude greater vertical extent). However, for larger strains of the
order of ∼10−2, the necessity of phase unwrapping even inside
the processing window may already be required [Fig. 6(a)],
which can introduce additional errors.

Alternatively, another computationally efficient and fairly
noise tolerant procedure that does not require phase unwrapping
over the window extent may be advantageous. In this procedure,
for each horizontal row within the processing window, we also
initially determine the averaged phase difference between the
reference and deformed B-scans. Then, after performing this
horizontal averaging for each depth along the window center-
line, one obtains a vertical array ΦðjÞ of phase differences
between the reference and deformed scans, where index
j ¼ 1: : : Nz enumerates the horizontal rows within the window
[of Nz pixels in the vertical (depth) direction]. The total phase
variationΦðNzÞ −Φð1Þ required for estimating its gradient over
the vertical extent of the window is

EQ-TARGET;temp:intralink-;e005;63;253Φtotal ¼ ΦðNzÞ −Φð1Þ ≡
XNz−1

j¼1

½Φðjþ 1Þ −ΦðjÞ�: (5)

Schematically, this procedure is shown in Fig. 6(b). In the
absence of phase-variation wrapping over the window, one
could simply take the difference ΦðNzÞ −Φð1Þ instead of per-
forming the incremental summation of Eq. (5). However, the
advantage of incremental Eq. (5) is that even if phase wrapping
ΦðNzÞ −Φð1Þ occurs over the window, the incremental summa-
tion yields the correct unwrapped result. It is assumed that there
is no phase wrapping within the interpixel phase-variation
ΔΦðjÞ ¼ ΔΦðjþ 1Þ − ΔΦðjÞ, which is definitely valid for
strains on order of a few percent (note that it is neither reason-
able nor practical to use larger strains since these would cause
further intense speckle blinking and thus produce very strong

decorrelation noise). This incremental procedure is equivalent
to averaging ΔΦðjÞ over the vertical size of the window;
it avoids unwrapping and is computationally simpler than the
least-squares fitting but may still yield strain maps with some-
what “patchy” structures (illustrated in Fig. 7 below). The aver-
age size of the “patches” in the strain map corresponds to the
size of the processing window, although the width of small wrin-
kle-like inhomogeneities can be as small as one pixel, because
shifting the window center by one pixel can give a slightly dif-
ferent estimate of the phase gradient and the resulting strain.

To further improve the phase gradient finding procedure, we
propose another approach [Fig. 6(c)], which also completely
obviates the necessity of unwrapping, is computationally effi-
cient, and produces smoother strain maps, thus avoiding the
pronounced patchy reconstructions in the noisy regions. This
method uses full complex-valued OCT signal amplitudes in
the reference scan, a1ðj;mÞ ¼ A1ðj; mÞ exp½i · ϕ1ðj;mÞ�, and in
the deformed one, a2ðj; mÞ ¼ A2ðj; mÞ exp½i · ϕ2ðj;mÞ�. For
every position of the processing window, we first find the
following complex-valued quantity containing the horizontally
averaged phase difference ΦðjÞ between the horizontal rows
with numbers j in the deformed and reference scans:
EQ-TARGET;temp:intralink-;e006;326;264

bðjÞ ≡ BðjÞ exp½i · ΦðjÞ� ¼
XNx

m¼1

A2ðj; mÞA1ðj; mÞ

× exp½i · ϕ2ðj; mÞ − i · ϕ1ðj; mÞ�: (6)

Here, j ¼ 1: : : Nz is the number of the horizontal row and m ¼
1: : : Nx is the number of vertical columns within the processing
window. In this vertical complex-valued array bðjÞ, one can
define the following complex-valued quantity cðjÞ containing
the horizontally averaged vertical increment of the phase
differences ΔΦðjÞ ¼ Φðjþ 1Þ −ΦðjÞ:

EQ-TARGET;temp:intralink-;e007;326;131cðjÞ ¼ bðjþ 1Þb � ðjÞ≡Bðjþ 1ÞBðjÞ exp½i · ΔΦðjÞ�: (7)

This quantity can be used in its normalized form cnormðjÞ ¼
cðjÞ∕jcðjÞj, retaining information about the phase increment
only:

Fig. 6 Schematic illustration of different methods for estimating the vertical gradient of phase-variation
within the processing window. (a) The least-squares estimation of the slope of the horizontally averaged
within the window phase-variation function, where index enumerates the horizontal rows within the
window (finding requires verification of eventual phase wrapping within the processing window).
(b) The stepwise summation of interpixel vertical differences in the phase variation for determining the
total phase variation over the processing-window size in the vertical direction (obviates the necessity of
phase unwrapping at each step even if the phase is wrapped over the entire processing-window size).
(c) The vector method based on stepwise summation of complex-valued interpixel increments that are
represented as vectors in the complex-valued plane (also obviates the necessity of unwrapping at each
step even if the phase is wrapped over the entire processing-window size). It is clear from the geometrical
interpretation that the vector method is especially robust to large errors in phase variation close to π rad,
because the rotation of the incremental vectors by π rad (as illustrated by the dashed vector) does not
affect the direction of the resultant summed vector.
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EQ-TARGET;temp:intralink-;e008;63;562cnormðjÞ ¼ exp½i · ΔΦðjÞ�: (8)

The horizontally averaged vertical phase increments ΔΦðjÞ
appearing in Eqs. (7) and (8) can be processed (for example, via
the least-square method24) to find the window-averaged vertical
phase gradient. However, we propose a somewhat different
method that can give even better results as demonstrated
below. It is based on processing the entire complex-valued quan-
tities cðjÞ or cnormðjÞ. We verified that the normalized phase
factor [Eq. (8)], without any additional amplitude weighting,
gave the best results. This observation makes sense – at the
first stage of horizontal averaging with amplitudes via Eq. (6),
contributions of weakest and most noisy pixels become signifi-
cantly suppressed. Subsequent amplitude weighting of these
already-averaged quantities ~cðjÞ effectively decreases the num-
ber of information-bearing signals available for phase-gradient
estimation over the vertical size of the window. The resultant
detriment from this decrease in the number of averaged signals
dominates, so that otherwise useful amplitude weighting does
not yield an improvement of the elastographic image. This is
true both for conventional least-square processing of the phases
ΔΦðjÞ and for the alternative processing of the complex-valued
signals cðjÞ [Eqs. (7) and (8)].

In the proposed method, the complex-valued quantities ~cðjÞ
[or ~cnormðjÞ] are considered as vectors in the complex-valued
plane, for which the interpixel phase increment ΔΦðjÞ corre-
sponds to the angle in the polar coordinate representation.
In the ideal case, the interpixel phase variation increments
ΔΦðjÞ should be identical within the window size, although
in reality, they fluctuate due to decorrelation effects and other
measurement noises or physical inhomogeneities. However,
the sum of these elementary incremental vectors over the vertical
size of the window yields a much more stable phase angle:

EQ-TARGET;temp:intralink-;e009;63;199~csum ≡ Csum exp½i · ΔΦ̄� ¼
XNz−1

j¼1

~cðjÞ: (9)

It is evident that in the ideal case of ΔΦðjÞ ¼ constant, one
obtains ΔΦ̄ ¼ ΔΦðjÞ ¼ constant in Eq. (9). In fact, this method
of obtaining the averaged phase variation incrementΔΦ̄ via vec-
tor summation in Eq. (9) uses averaging of real and imaginary
parts of the complex-valued vectors ~cðjÞ, instead of direct
averaging of individual ΔΦðjÞ via Eq. (5) or the conventionally
used least-squares fitting. Furthermore, the vector procedure

represented in Eq. (9) also obviates the necessity of phase
unwrapping for practically interesting strains below ∼10−2, for
which there is no phase wrapping for neighboring pixels. This
method is computationally efficient and, as shown below,
gives smooth and noise tolerant strain maps with strongly
reduced “wrinkles” and “patches” typical of the direct averaging
of the phase increment ΔΦðjÞ and even for least-squares finding
of the phase-variation gradient. It can be also noted that in many
cases, the quality of phase estimation can be improved by com-
paring the phases not for adjacent pixels j and jþ 1, but for j
and jþ 2, because the level of the phase errors in these pixels is
the same, but the basis Δj ¼ 2 for estimating elementary gra-
dient becomes 2× greater. A further increase of the interpixel
distanceΔj ¼ 3;4; : : : is usually not so useful for further quality
improvement, because this increase reduces the number of
elementary incrementsNz in Eqs. (5) and (9) within a given win-
dow size. Besides, for increased distance Δj between compared
pixels, eventual phase wrapping may occur, producing addi-
tional errors instead of improving the strain map quality.

Figure 7 shows the resulting strain maps for the sample
used in Figs. 3 and 5, obtained with three different phase-
gradient-estimation methods illustrated in Fig. 6 (16 × 16 pixels

processing window, Δj ¼ 2). Figure 7(a) is obtained using
the conventional method of least-squares fitting of the phase-
variation26 [cf Fig. 6(a)], in which the necessity to unwrap
the phase should be checked and then the error-prone unwrap-
ping performed if necessary. Figure 7(b) is based on the direct
averaging of ΔΦðjÞ as per Fig. 6(b) and Eq. (5) [the errors in
the resultant strain map are somewhat different, but the image
quality is roughly the same as in Fig. 7(a)]. Finally, Fig. 7(c) is
obtained via vector averaging [see Fig. 6(c) and Eq. (9)] in
which normalized elementary vectors [Eq. (8)] are used. It is
clear that the vector averaging procedure is preferable, yielding
cleaner and smoother strain maps (without sacrificing the spatial
resolution) even in regions where the least-square fitting and
incremental phase-gradient estimation generate numerous patchy
defects. Similar to the incremental phase-difference method, this
approach obviates the necessity of phase unwrapping and is
computationally efficient.

In addition to phantoms, examples in Figs. 7 and 8 illustrate
the advantage of the vector method of estimating the phase
gradient and strain in tissue. Figure 8(a) reproduces the strain
map from Ref. 30 obtained using the least-squares fitting of
phase-variation gradient for a tissue sample excised during a
gynecological procedure (the experimental studies of the excised

Fig. 7 Strain maps for the above described three-layer sample found for the same processing window
size 16 × 16 pixels using conventional least squares fitting of the phase-variation gradient for [panel (a),
see Fig. 6(a)], direct averaging of the inter-pixel phase-variation increments [panel (b), see Fig. 6(b)], and
vector averaging via Eqs. (8) and (9) [panel (c), see Fig. 6(c)].
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samples were performed with obtained subjects’ consent and
approved by the Ethics Committee of the Nizhny Novgorod
State Medical Academy, Protocol No. 14 of December 10,
2013). The human gynecological tissue sample was ∼1 mm

in thickness and 5 mm × 7 mm laterally, was not fixed, and
was examined within 2 h after excision. This specimen was sur-
gically excised with biopsy forceps, such that the outer layers of
the mucous tissue ended up on both sides (above and below) of
the subsurface tissue with expectedly lower stiffness. Such
a three-layer structure is clearly visible in the histology of
Fig. 8(c) and in elastographic maps of Figs. 8(a) and 8(b),
where the intermediate layer clearly exhibits greater deformabil-
ity. In comparison with Fig. 8(a) obtained via least-square fitting
of the phase variations, Fig. 8(b) now shows the improved strain
map obtained with the vector method of phase-gradient estima-
tion based on Eq. (9), in combination with normalization of
elementary vectors according to Eq. (8) (it was verified that
the use of normalization gave better results in this case).

In the context of the pixel-scale compensation procedures
described in Sec. 4, we note that summing the cumulative

displacements of strains over depth (see also discussion in
Ref. 18) is not able to account for possible translational (block
or bulk) displacement of the entire scan that is not related to the
strain field visible within the scan. Nevertheless, if such a trans-
lational displacement does occur (e.g., because of deformation
of the reference layer that is not completely visualized or a trans-
lation shift due to another reason), it can be readily found by
a conventional correlation search and thus compensated for.
This can be rapid as it requires only an integer-pixel search
and needs to be done only once at the beginning of processing
(using a correlation window in the upper part of the scan, where
the strain-produced displacements have not yet accumulated).
The determined translational pixel-scale correction can thus
be applied to the entire scan. After this, the additional depth-
dependent strain-produced shift can be found using the
described cumulative phase-gradient-estimation procedures.
In fact, such a method of preliminary finding the “global” trans-
lational shift was used in generating the results of Fig. 5.

Summarizing the above-considered optimizations of phase-
gradient estimation, the following flow chart in Fig. 9 shows

Fig. 8 Strain maps obtained from processing a pair of compared OCT scans of human biological tissue
excised during a gynecological operation. Panel (a) is from Ref. 22 where the least-square fitting was
used for determining the strain gradient. Panel (b) is the result of applying the currently proposed vector
method for phase gradient estimation, with the same size of the processing window 16 × 16 pixels as in
panel (a); note that the “patchy” strain errors are now significantly reduced. Panel (c) is also reproduced
from Ref. 22, to illustrate that histology confirmed the presence of the three-layer structure revealed in
the elastographic maps. [(a) and (c) reproduced with permission].

Fig. 9 Flow chart summarizing the main steps of the proposed optimizations of phase-gradient estima-
tion including utilization of the proposed “vector” method and application of correcting shifts.
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the main steps including utilization of the proposed “vector”
method and application of correcting shifts.

6 Conclusion
The proposed optimizations of phase-gradient estimation
between reference and deformed scans take into account some
important but often neglected features of complex-valued pixe-
lated images in low-coherence methods. Although it is true that
phase and amplitude measurements are usually independent, the
influence of amplitude of the OCT signal leaking to neighboring
pixels may significantly affect the determined phase variations;
this is particularly so in the vicinity of strongly reflecting image
features, as illustrated in this study.

We emphasize that even for suprapixel displacements, it is
possible to introduce appropriate compensating shifts that can
diminish the role of the displacement-induced decorrelation
noise, in contrast with direct pixel-to-pixel phase comparison
methods. Such compensation can significantly enhance the
accuracy and robustness of the estimated phase-gradients, both
essential features for the success of the phase-resolved variants
of compressional OCE. Consequently, here, we show that the
proposed optimized methods of phase-gradient estimation can
confer high tolerance of compressional OCE to various noise
sources (see also Ref. 30) This is in part due to the possibility
of using significantly increased strains and displacements, com-
pared with conventional phase-resolved approaches that are
usually limited to subpixel and even subwavelength displace-
ments of scatterers.

Besides reducing the decorrelation noise by suitable integer-
pixel displacement corrections, the proposed method of phase-
gradient estimation eliminates the necessity of error-prone pro-
cedures of phase unwrapping that usually limit conventional
approaches. Although our approach does not directly determine
cumulative multiperiod phase variations via unwrapping, it
does ensure reconstruction of not only local strains, but also
cumulative strain-induced displacements on supra-wavelength
and even suprapixel scales with high accuracies that are
usually unattainable with conventional phase unwrapping. The
proposed approach may be of special interest in situations for
which it may be challenging to implement signal-to-noise
enhancement by averaging strain maps via stable periodic defor-
mation sources. Thus, this optimized phase-gradient-determina-
tion methodology may be especially relevant to compressional
OCE using a hand-held OCT probe as the compression element,
which is of direct interest for practical applications in clinic.

Finally, we also demonstrate the existence of the “frozen
phase-variation” zones associated with bright scatterers that may
yield artifactual stiff localized inclusions in the reconstructed
strain maps. This phenomenon should be taken into account
in interpretation of the resultant OCT elastograms.
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