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Experimental validation of optimum input polarization
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Dual photoelastic modulator polarimeters can measure light polarization, which is often described as a Stokes vec-
tor. By evaluating changes in polarization when light interacts with a sample, the sample Mueller matrix also can be
derived, completely describing its interaction with polarized light. The choice of which and how many input Stokes
vectors to use for sample investigation is under the experimenter’s control. Previous work has predicted that sets of
input Stokes vectors forming the vertices of platonic solids on the Poincaré sphere allow for the most robust Mueller
matrix determination. Further, when errors specific to the dual photoelastic modulator polarimeter are considered,
simulations revealed that one specific shape and orientation of Stokes vectors (cube on the Poincaré sphere with
vertices away from principal sphere axes) allows for the most robust Mueller matrix determination. Here we
experimentally validate the optimum input Stokes vectors for dual photoelastic modulator Mueller polarimetry,

toward developing a robust polarimetric platform of increasing relevance to biophotonics.
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Polarized light is often described by a four-element
Stokes vector, S = [, Q, U, V]T where I is the overall in-
tensity, @ and U describe the magnitude and orientation
of the linearly polarized component, and V describes the
magnitude and handedness of the circularly polarized
component [1]. Stokes vectors are often normalized by
dividing a factor of I out of each element. For fully po-
larized light, the equality (Q/I)? + (U/I)?> + (V/I)? =1
is satisfied, providing a convenient way to geometrically
represent polarization states. If @/I, U/I, and V/I are
used as the axes of a 3D coordinate system, then plots
of fully polarized states will produce a sphere of unit ra-
dius, centered about the origin. This is known as the
Poincaré sphere [2,3]. Partially polarized light satisfies
the inequality (Q/I)? + (U/I)?> + (V/I)? < 1; thus these
states lie inside the Poincaré sphere. Random polariza-
tion corresponds to the zero vector.

When an initial beam of polarized light, referred to as the
input Stokes vector, S™, interacts with a sample, its polari-
zation state is altered. The emergent light, denoted by the
output Stokes vector, S°™, is determined by the sample
properties according to the matrix-vector equation

Sout — MS™, D
Here M is the sample’s Mueller matrix. This polarization
fingerprint encodes properties such as depolarization, lin-
ear retardance, diattenuation, and optical activity to com-
pletely describe the sample’s interaction with polarized
light [3,4]. Measurement of the 16-element (4 x 4) Mueller
matrix is the goal of Mueller polarimetry. In biophotonics,
this technique has been investigated for noninvasive
glucose monitoring [5,6], monitoring myocardial infarct
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response to stem-cell therapies in animals [6,7], detecting
axial heterogeneity in anisotropic tissue [8], characteriz-
ing distended rat bladders [9], characterizing healthy
and cancerous human cervix [10] and colon samples
[11], and so on.

To determine the sample Mueller matrix, one measures
a set of n input light polarizations, grouped as the matrix
Sin = [Si(ll‘) . .Si(‘;L)], and corresponding output polarizations,
SO = [S{}}'...S(y]. Using these Stokes matrices in place of
individual Stokes vectors, n versions of Eq. (1) become

Sout — MSin, (2)

A minimum of 16 linear equations, which can be gen-
erated from n =4 unique input vectors and their
corresponding outputs, are required to solve for the
Mueller matrix [12]. Through rearrangement of Eq. (2),

M = Sout(Sin)—l’ (3)

provided S™ is invertible. Supplemental measurements
(n > 4) can be made in an attempt to reduce Mueller ma-
trix errors [12]. In this case, the system in Eq. (2) is likely
overdetermined, and the least-squares best fit is given by

M = Sout(Sin)-k, (4)

where (S™)* = (SM)T[S"(S)7]-! is the Moore—Penrose
pseudoinverse of S™ [12].

Unfortunately, the highly turbid nature of biological
tissue causes light to undergo multiple scattering events
before it is detected, leading to increased depolarization.
It is therefore imperative to measure and isolate the
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remaining information-carrying polarized fraction of light
that emerges from tissue with high accuracy and SNR.
This is a goal of the dual photoelastic modulator (dual
PEM) polarimetry system (Fig. 1) described by Guan
et al. [13], which combines polarization modulation with
phase-sensitive synchronous detection to accurately
measure all four Stokes parameters simultaneously, with
no mechanically moving parts.

An important question is whether there exists a specific
set of input Stokes vectors that allows for the most robust
Mueller matrix determination by a dual PEM system. In a
previous theoretical paper [14], Layden et al. derived an
expression for an upper bound on the root-mean-square
(RMS) error in Mueller matrix elements, denoted (6M),
resulting from random measurement noise, 6S™ and
8S°U in input and output Stokes vectors, respectively:

172 N
(M) S nT ((85°1) + 4MY(SS™HIEM L (B)

where (A) denotes the RMS of the elements in matrix A,
and ||(S™)*|| is the norm of the pseudoinverse of S™.
Although noise in Stokes vectors is not directly con-
trollable, the experimenter can choose input vectors to
minimize [[(S™)*||, which in turn minimizes the Mueller
error, (6M), for fixed n. This occurs when vectors of S™
form vertices of a Platonic solid when plotted on the
Poincaré sphere [14]. For n = 4, this is a tetrahedron,
n = 6 an octahedron, n = 8 a cube, and n = 12 an icosa-
hedron. The superiority of these arrangements can be
understood from the fact that, for a given n, a Platonic
configuration allows the Stokes vectors to be spread
as far apart as possible on the Poincaré sphere, providing
even sampling over the entire polarization space.
However, when a vector set satisfies the Platonic solid
condition, the following is true of its pseudoinverse [14]:

in _ 10 172
16 Tunt) = (57) ©
Substituting into Eq. (5),
5\ 1/2 .
o S (5)" o s,

Thus it appears that as long as the input Stokes vectors
form vertices of a Platonic solid, neither the number of
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Fig. 1. Dual PEM polarimeter. Polarized light of a suitable in-
put state is produced by the polarization state generator (PSG).
This light interacts with a sample, and the output polarization is
analyzed by passing through two PEMs (45° and 0° above hori-
zontal) and a linear polarizer (22.5° above horizontal). The
modulation frequencies, f; and f5, of the PEMs are used as
references for lock-in amplifiers, which recover @, U, and V
of light reaching the detector, via synchronous detection.
The I component is recovered by a lock-in using the beam
chopper frequency, f,, as a reference.
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input vectors, nor the orientation (under rotation) of the
solid on the Poincaré sphere, has any first-order effect on
Mueller error. To address this lack of specificity, Layden
et al. [14] considered an error source unique to the dual-
PEM system: phase errors.

Phase errors occur when the phase differences be-
tween signal oscillations and PEM reference frequencies
are measured by the system lock-in amplifiers to be close
to 0 or +180°. This occurs most frequently when signal
amplitudes are small, i.e., when |Q|, |U|, or |V| approach
0. When Stokes vectors near these phase-error regions
(see Fig. 2) are measured, noise fluctuations may cause
the measured phase to switch signs, leading to a sign er-
ror in the corresponding Stokes element. A simulation,
modeling the effects of phase errors and random meas-
urement noise, revealed the following set of input Stokes
vectors allows for the most robust result [14]:

Stapy = [S{1)---S{§)] where

1 1 1
gn _ | 058 g [ 088 | g | 058 |
W 1os8 " @ o058 |0 @ | -058|
| 0.58 -0.58 0.58
T 1] T 1] 1
.| 058 o | 058 o |08 |
@1 058 ® 1 058 ©1 058 |’
| -0.58 | | 0.58 | ~0.58
- - L7
. ~0.58 . ~0.58
50 =1 _o.58 ® = | 058 ®
| 058 | -0.58 |

This “Optimum” set [see Fig. 2(a)] forms a cube
(n = 8) on the Poincaré sphere, with all vertices oriented
as far away as possible from the regions most prone to
phase error.

(b (i) (b-ii1)
Fig. 2. Sets of input vectors forming Platonic solids (namely, a
cube) when plotted on the Poincaré sphere. The sphere equator
represents linear polarizations, and the poles represent circular
polarizations. Phase-error regions, where @, U, or V = 0, are
shown with red circles. (a) The Optimum set contains Stokes
vectors that from vertices of a cube, maximally distant from
the phase-error regions. (b) The Rotated-Optimum set also
forms a cube, but with vertices rotated into the phase-error re-
gions. Column (i) gives 3D views; column (ii) shows the front
face of the Poincaré sphere; column (iii) shows the back face.
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Here we set out to experimentally test the validity of
this Optimum set of input Stokes vectors. The Mueller
matrix of a liquid biological phantom was measured with
five different sets of input polarizations. The Mueller
error associated with each set was then quantified.

Measurements were made in transmission with a
660 nm laser (Coherent Cube 660-60C). Due to multiple
scattering, the path length (thru 2 mm x 10 mm x
43 mm cuvette) is greater than 2 mm, and coherence
effects are negligible.

The sample had properties of porcine liver tissue
(reduced scattering coefficient, y, = 5.60 cm™!, and ab-
sorption coefficient, y, = 4.14 cm™) [15]. We chose a
sample that only exhibits depolarization, since it is the
dominant polarization effect in biological tissue. Linear bi-
refringence is next, and circular birefringence is weakest.
The relative strengths of these, and other rare effects (i.e.,
diattenuation), are tissue and wavelength dependent.

The Mueller matrix, calculated from Eq. (4) using the
Optimum set measurements, was

1.000  0.0000 0.0000 0.0000

M. — | ~0-0076 04147 0.0011 0.0005 ©

© -0.0050 -0.0004 0.4355 0.0007 |
0.0037  0.0032 0.0016 0.8220

Each of the five sets of input polarizations consisted
of n =8 different Stokes vectors. The Optimum set,
Fig. 2(a), contains vectors forming vertices of a cube
when plotted on the Poincaré sphere, with vertices max-
imally distant from the phase-error regions. The second
set, Fig. 2(b), also forms vertices of a cube, allowing for
an even sampling of the polarization space. However, this
“Rotated-Optimum” set is oriented away from its opti-
mum configuration so that the vectors approach the
phase-error regions.

The three remaining sets, shown in Fig. 3, consist of
Stokes vectors produced by random polarization state
generator (PSG) orientations (i.e., random polarizer
and quarter-wave plate orientations). These “Random”
sets differ in how evenly distributed their polarization
vectors are, as well as in proximity to the phase-error re-
gions. In order to quantify these different characteristics
we define: (1) the “mean separation angle” between the
eight Stokes vectors as a measure of a set’s “spread” and
(2) the number of normalized Stokes elements (out of 24
—@, U, and V for eight vectors) in each set with magni-
tude <0.10 as a measure of a set’s proximity to the phase-
error regions. These characteristics are summarized in
Table 1. For vectors forming vertices of a perfect cube,
the mean angle between vectors is a maximum, at 102.9°.
As this mean separation angle decreases, the plotted
Stokes vectors become less spread out (become more
clustered) and less resemble the vertices of a cube. As
seen in Table 1, Optimum and Rotated-Optimum sets
have mean separation angles close to the ideal 102.9°,
whereas those of the Random sets are lower. Randoms3
has the most clustered input Stokes vectors, with a mean
separation angle of 90.4°. The Optimum set best avoids
the phase-error regions, Rotated-Optimum is the worst
overall, and Random3 is worst among the Random sets.

To characterize the error associated with a set of input
Stokes vectors, we first measured each of its eight input
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Fig. 3. Random sets of input Stokes vectors plotted on the
Poincaré sphere. Sets differ in mean separation angle and prox-
imity to phase-error regions: (a) Randoml; (b) Random2;
(c) Random3. Column (i) gives 3D views; column (ii) shows
the front face of the Poincaré sphere; column (iii) shows the
back face.

Stokes vectors, Sm) (4 =1 to 8), with the dual PEM
setup, and each input vector was repeatedly measured
10 times, (j = 1 to 10) for a total of 80 input Stokes vector
measurements. The tissue phantom was then placed in
the beam path, and the eight corresponding output states,
SO‘;t were measured, again with 10 measurements of
each vector. As a result each data set contained 160
Stokes vector measurements. (S ) to S(s 10) and S{Y)
to Sfio))- A “correct” reference f\/[ueller matrix for the
tlssue phantom My, was calculated for the set, from

Eq. (4), using the eight average input vectors,
Stve = Stlave) - SEay ], and eight corresponding aver-
age output vectors, S; avg) [S?{‘;Vg) S?élavg)], where
221865
Siavg = =22 (10)

To get a quantitative measure of how individual Stokes
measurements affected the stability of the inferred Muel-
ler matrix, M, we calculated 160 “erroneous” Mueller
matrices, M), where k = 1 to 160. Each M, was found
using one individual (as opposed to averaged) Stokes
vector measurement, S; ,, and the average Stokes vec-
tors for the remaining 15 input/output states. For exam-
ple, M}, was found from S™ = [S{} S5 ,.)---S{§avg] 2nd
S(avg), M(z) from SH = [S(II2) (Zavg)“'S(Savg)] and S(avg),

Table 1. Characteristics of Input Polarization Sets

Input Stokes Mean Separation Stokes Elements Near

Vectors Angle (degrees)” Phase-Error Regions’
Optimum 102.3 0

Rotated- 102.6 8

Optimum

Random1 94.2 2

Random2 97.8 3

Random3 90.4 5

“102.9° for a perfect cube. Smaller angles are more clustered. Optimum
and Rotated-Optimum are not exactly 102.9° due to experimental
imperfections.

*Number of elements (out of 24) in Si* , With magnitude <0.10.

(avg



n e o ) -
Mgy from S™ =[S0 SG1SGave - -S@avg] and S?;‘Vg),

and Mg from S, and S = [SXL .- S¥ s SE1o) -
The difference matrix for each M, was calculated as

oMy = M) — M), (11
and the error in each M, is defined as the RMS of 6Mj:

(M) = \/(M(k) - Mg)) oMy — M(g)). (12)

Here o is the Hadamard product, denoting element-wise
multiplication (i.e., each element of (Mg, -M(y)) is
squared), and the overbar symbol, ; denotes the mean
of the matrix elements. The overall error, (§M), associ-
ated with the set is then the average of all (6M)):

i (M)
(M) = 160 . (13)

Results are summarized in Fig. 4. As predicted, the
Optimum set allowed for the most robust Mueller matrix
determination. The error associated with the Optimum
set is significantly lower than that of all other sets, as de-
termined by two-tailed unpaired t-tests (p < 0.05).

The error associated with the Rotated-Optimum set is
close to, but significantly greater than that associated with
the Optimum set (p = 0.02). This highlights the effect of
phase errors on Mueller matrix determination, as these
sets only differ in their orientation on the Poincaré sphere.

Furthermore, the error associated with Rotated-
Optimum is lower than, but not statistically different
(p > 0.05) from, Random1. The similarity between these
sets illustrates how phase errors and input vector
“spread” must be considered when choosing input states.
Even though Randoml vectors do not form a platonic
solid, they do avoid the phase-error regions to a greater
extent than the Rotated-Optimum vectors. Thus it ap-
pears the advantage of Rotated-Optimum’s cubic configu-
ration is negated by its proximity to phase-error regions.

It is interesting that Random1 allows for more robust
Mueller matrix determination than Random2, despite
being further from a cubic configuration, as evidenced
by its smaller mean separation angle. As in the previous
case, this is likely because Random1 avoids the phase-
error regions better than Random2.

Finally, Random3 resulted in the least robust Mueller
matrix determination. This is expected as it had the
smallest mean separation angle and, of all Random sets,
the most Stokes vectors near the phase-error regions.

This study is limited, as our evaluation of Mueller ma-
trix determination “robustness” is only based on the pre-
cision (or repeatability) afforded by the different sets of
input Stokes vectors, not their accuracy. This was done
because, to assess accuracy, the “true” Mueller matrix of
the sample would need to be known to a great degree of
exactness, which is a difficult challenge with a biological
phantom. Furthermore, there are infinite possible sets of
input Stokes vectors, but testing an increasingly large
number becomes impractical. Nevertheless, this study,
in combination with previous work [14], offers confi-
dence in the optimum input polarizations.

In conclusion, we have experimentally validated
that the spread of input polarization vectors and their
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Fig. 4. Mueller matrix error associated with different sets of
input Stokes vectors. Error bars show standard error.
Differences between all sets were significant, as determined
by two-tailed unpaired t-tests (p < 0.05), except between
Rotated-Optimum and Random1. Optimum allows the most ro-
bust Mueller matrix determination, since its vectors are evenly
spread about the Poincaré sphere and are maximally distant
from phase-error regions.

proximity to phase-error regions must be considered
when performing Mueller matrix polarimetry with a dual
PEM setup. We also have provided experimental evidence
that the set of Stokes vectors forming a cube on the
Poincaré sphere, with vertices oriented as far away as
possible from phase-error regions, allows for the most
robust Mueller matrix determination with a dual-PEM
polarimeter.
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