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Quantifying tissue microvasculature with speckle
variance optical coherence tomography
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In this Letter, we demonstrate high resolution, three-dimensional optical imaging of in vivo blood vessel networks
using speckle variance optical coherence tomography, and the quantification of these images through the devel-
opment of biologically relevant metrics using image processing and segmentation techniques. Extracted three-
dimensional metrics include vascular density, vessel tortuosity, vascular network fractal dimension, and tissue vas-
cularity. We demonstrate the ability of this quantitative imaging approach to characterize normal and tumor vas-
cular networks in a preclinical animal model and the potential for quantitative, longitudinal vascular treatment
response monitoring. © 2012 Optical Society of America
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Tumors require access to blood vessels for oxygen and
nutrient exchange, making the tumor vasculature an at-
tractive potential target for cancer therapies. Tumor vas-
culature is poorly organized, leaky, and tortuous, often
resulting in poorly oxygenated (hypoxic) tissue regions
that are resistant to most cancer treatments, including
chemotherapy and radiation therapy [1]. Recently, the
role of tumor vasculature has been gaining increasing at-
tention as a potential biomarker and therapeutic target in
cancer treatment [2]. Optical modalities that have been
used for preclinical vascular imaging include fluores-
cence microscopy, hyperspectral imaging, and optical
coherence tomography (OCT) (see [3] for a recent re-
view). Speckle variance OCT (svOCT), a functional
extension of traditional OCT, can yield direct and
depth-resolved visualization of vessels as small as
~15-25 ym in diameter without the use of contrast
agents. However, these detailed and complex three-
dimensional (3D) vascular images are difficult to assess
by qualitative observation, and vascular changes in re-
sponse to treatment are often too subtle to detect by
the unaided eye. Quantitative longitudinal in vivo mon-
itoring of tumor vascular structure will provide greater
insight into the underlying vascular contributions to
disease progression and treatment response. Here, we
demonstrate the development of vascular metrics from
svOCT images for quantitative vascular imaging in vivo.

svOCT provides depth-resolved, high-resolution visua-
lization of vasculature in vivo; unlike Doppler imaging,
speckle variance is independent of blood flow or imaging
angle [4]. 3D vascular images are obtained by calculating
the interframe variance (SV,;,) of N consecutive B-mode
OCT structural intensity (I;;) images pixel-by-pixel with-
in the sample, where N is the number of frames used in
the variance calculation (gate length) [4]:
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Vascular (fluid) regions decorrelate faster than solid
tissue, and this difference in the time-varying properties
of fluids and solids gives rise to different speckle
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patterns, yielding endogenous contrast between blood-
filled vessels and surrounding tissues. Because the con-
trast is derived from inherent tissue properties, unlike
fluorescence microscopy, svOCT does not require the
use of exogenous contrast agents.

The OCT system has been described previously [5].
Briefly, images were acquired with a 36 kHz Fourier do-
main mode-locked swept source OCT system with a fiber
ring laser consisting of a polygon-based tunable filter
with a 110 nm sweeping range centered at 1310 nm
and an average optical output power of 48 mW. The sys-
tem resolutions in tissue were ~8 um axially and ~13 ym
laterally. Vessels smaller than the lateral resolution of
the system cannot be resolved and therefore were not
included in the quantification.

A dorsal skin fold window chamber (DSWC) model,
shown in Fig. 1(a), was used in nude mice for direct
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Fig. 1. (Color online) (a) DSWC model. White square outlines
svOCT image area in (b). (b) svOCT image of in vivo normal
vasculature. svOCT images are color-depth encoded, color
bar represents vessel depth in tissue from the coverslip in
pm. White box outlines region of interest (ROIL) in (d), (e),
and (f). (¢) svOCT image of tumor vasculature overlaid with
fluorescent ME180 tumor cells (cyan). (d) Normal ROI from
(b). (e) 3D binary isosurface rendering of (d). (f) 3D isosurface
representation of the 3D skeleton of (d). Scale bars 1 mm.
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microscopic visualization of vasculature in normal and
tumor tissue. Six mice were used to test the derived
svOCT metrics comparing normal (n = 3) and tumor
(n = 3) vasculature. To minimize bulk tissue motion
artifacts, anaesthetized mice were restrained using a cus-
tomized holder during imaging. For tumor-bearing mice,
ME180 human cervical carcinoma cells transfected with
the DsRed2 fluorescent protein were injected into the
fascia and grown for one week before imaging. The fluor-
escent protein enabled tumor cell visualization and sub-
sequent coregistration of fluorescent and svOCT images.
All animal procedures were performed under ketamine-
xylazine anaesthetic and approved by the University
Health Network Animal Resource Centre.

Normal and tumor-bearing mice were imaged in vivo
using svOCT over a 6 x 6 mm? field of view with 800
A-scans per frame and a gate length of N = 8. We have
previously shown that this gate length is optimal for low
bulk tissue motion scenarios, such as the DSWC [5]. 3D
speckle variance images were averaged in the axial and
lateral (B-scan) directions to produce an isotropic voxel
size of ~8 ym>. The forward scattering of photons by
red blood cells results in shadowing artifacts below
blood vessels; these artifacts were minimized by applying
a step-down exponential filter in the axial direction,
attenuating underlying voxels by a numerical factor pro-
portional to the sum of the voxels immediately above [6].
A two-dimensional (2D) median filter with a window size
of 3 x 3 pixels was applied to speckle variance images in
each axial plane in the z direction to reduce “salt and
pepper noise”, and a hard threshold was applied to trun-
cate low-intensity noise. In tumor-bearing mice, vascular
quantification was performed over regions of interest en-
compassing the tumor as defined by the DsRed2 fluores-
cence image overlaid on the projected svOCT image, and
in similarly located regions in non-tumor-bearing mice
[Figs. 1(b) and 1(c)].

Following the image postprocessing described above,
svOCT images were converted to 3D skeletons to facili-
tate analysis of the vascular networks. Skeletonization
reduces each vessel to its median line, retaining its fun-
damental topology, orientation, and connectivity at the
expense of losing vessel diameter information. For 3D
skeletonization of svOCT images, an algorithm that alter-
nated between object thinning and pruning was used [7]
[Fig. 1(f)]. The pruning algorithm removed small surface
features; this reduced vessel artefacts resulting from im-
age noise and vessel-surface irregularities. The algorithm
is fully described and validated elsewhere [7] and avail-
able as freeware [8].

Quantitative vascular metrics were derived from
extracted skeletons using MATLAB (The MathWorks,
Natick, Massachusetts) and ImageJ (National Institutes
of Health, Bethesda, Maryland). Four metrics were ex-
tracted directly from the 3D skeletal images: (1) vessel
segment density (VSD), (2) vascular length density
(VLD), (3) average vascular tortuosity, and (4) fractal di-
mension. Figure 2 presents these analyses; note that for
each of the four derived metrics, the difference between
the tumor and normal values exceeds the intra-animal
variation in the two groups.

The number of vessel segments in the volume of inter-
est was calculated in ImageJ, where a vessel segment
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Fig. 2. Quantitative results comparing tumor and normal vas-
cular characteristics for the four different metrics derived from
3D skeletonization of svOCT images (n = 3 animals for each
group). Error bars represent standard deviation between mice.

was defined as any line connecting a branch point and
an end point, or two branch points. This number was
divided by the volume of the analyzed region to obtain
VSD. The average VSD of normal vasculature was higher
than that of tumor vasculature [Fig. 2(a)]. This can be
explained by the presence of large avascular regions
within the tumors. The volumetric VLD is an alternate mi-
crovascular metric that provides information comple-
mentary to VSD [Fig. 2(b)]. It is computed by dividing
the sum of the vessel lengths by the interrogated volume.
Together, VLD and VSD describe 3D microvascular den-
sity, a 2D measurement used in histology to assess tumor
angiogenesis [9].

The tortuosity of each vessel segment was computed
by dividing the length of the segment by the straight line
Euclidean distance between its end points. The average
tortuosity of the vessels within the volume was computed
from the mean of these values. The minimum value of
tortuosity is 1, indicating a straight vessel; as tortuosity
increases, the efficiency of blood transport through the
vessels decreases. Biologically, increased vascular tortu-
osity is indicative of disease, and can be related to vas-
cular dysfunction [10]. As predicted in the literature
using qualitative observations [11], the quantified aver-
age tortuosity of the tumor vasculature in our study
was slightly higher than that of the normal [~1.23 versus
~1.21, Fig. 2(c)].

Fractal dimension is a statistical measure used to char-
acterize the degree of space filling of a vascular network.
Biologically, this measurement can reflect the efficiency
of oxygen and nutrient delivery to the tissue by quantify-
ing the vascular network complexity [12]. Fractal dimen-
sions for normal and tumor vascular networks were
extracted using a 3D box-counting algorithm applied
to the 3D vascular skeletons [13]. The fractal dimension
was acquired by decreasing the cube size of a 3D grid
overlaid on the skeleton and counting the number of
filled cubes at each scale. The natural logarithm of the
number of filled cubes was then plotted against the nat-
ural logarithm of the cube side length, and the fractal di-
mension was the slope of the linear portion of this plot.
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Fig. 3. (Color online) Isosurface rendering of 3D svOCT
image (red = vessels) and areas of tissue more than 100 ym
from any vessel in 3D (blue = potential hypoxic tissue) for
(a) normal and (b) tumor vasculature. (ROI = 2.4 mmx
2.4 mm x 0.5 mm) (¢) Comparison of normal (» = 3) and tumor
(n = 3) tissue vascularization distribution; error bars represent
standard deviation of histogram values between mice.

The fractal dimension of the normal vasculature was
higher than the tumor [~2.09 versus ~1.95, where 3.0
would indicate a completely filled volume, Fig. 2(d)].
This suggests that normal vasculature is overall more
space-filling than tumor networks, which are spatially
heterogeneous with highly avascular as well as densely
vascular regions [cf. discussion of Fig. 2(a)]. In future,
use of smaller regions of interest to assess this vascular
heterogeneity will be explored.

Qualitative evaluation of extracted vessels showed
good agreement with original images; however, it was
noted that the skeletonization can be sensitive to image
noise and vessel surface irregularities. Consequently, me-
tric values are somewhat dependent on original image
quality; image preprocessing and skeleton pruning were
used to reduce artefacts. Additional studies (independent
validation, intermediate pathology grades, additional
time points, and more animals) are required for optimi-
zation and validation of robustness and reproducibility of
this approach.

All tissues require oxygen, and cells that are beyond
the average oxygen diffusion distance (~100 ym) from
a vessel are likely to be hypoxic and/or treatment resis-
tant [14]. To quantify this, the 3D Euclidean distance
transform was computed from a 3D binary vascular
map [Fig. 1(e)]; each value yielded the distance between
that point and the nearest vessel. The resultant 3D image
can be used to visually identify tumor regions that are
likely to be hypoxic [Figs. 3(a) and 3(b)]. Furthermore,
tissue vascularization can be quantified by plotting the

distance transform distribution histogram [Fig. 3(c)].
This metric intrinsically includes information about
vessel diameter, a potentially important quantity that is
lost in the skeleton-derived metrics.

In summary, we have developed quantitative metrics
that uncover and measure vascular characteristics from
3D svOCT images. Our approach enabled in vivo charac-
terization of normal and tumor microvasculature imaged
within the DSWC model. Each metric provides a unique
description of a particular microvascular characteristic
and in combination with others offers quantitative insight
into the underlying biology of vascular development and
response. In the future, this methodological platform will
be used preclinically for studying longitudinal vascular
effects of cancer treatments such as radiation therapy
and antivascular drugs.
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