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Abstract. The use of a combined spectral intensity and polarization
signals optically scattered by tissue to determine analyte concentra-
tion in optically clear and turbid biological media was explored in a
simulation study. Blood plasma was chosen as the biological model
and glucose as the analyte of interest. The absorption spectrum and
optical rotatory dispersion were modeled using experimental data and
the Drude’s equation, respectively, between 500 and 2000 nm. A
polarization-sensitive Monte Carlo light-propagation model was used
to simulate scattering media. Unfold partial least squares and multi-
block partial least squares were used as regression methods to com-
bine the spectral intensity and polarization signals, and to predict
glucose concentrations in both clear and scattering models. The re-
sults show that the combined approaches produce better predictive
results in both clear and scattering media than conventional partial
least squares analysis, which uses intensity or polarization spectra
independently. This improvement was somewhat diminished with the
addition of scattering to the model, since the polarization signals were
reduced due to multiple scattering. These findings demonstrate prom-
ise for the combined approach in clear or moderately scattering bio-
logical media; however, the method’s applicability to highly scattering
tissues is yet to be determined. The methodology also requires experi-
mental validation. © 2008 Society of Photo-Optical Instrumentation Engineers.
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Introduction

iabetes mellitus is a chronic systemic disease with no known
ure in which the body either fails to produce, or fails to
roperly respond to, the glucose regulator hormone insulin.
stimates put the number of diabetics in North America at
5 million and the number worldwide at over 100 million,
ith these numbers expected to rise dramatically over the
ext 30 years.1 The primary goal of diabetes therapy is to
aintain normal blood glucose homeostasis through diet, ex-

rcise, medication, or insulin injections. Accordingly, frequent
onitoring of blood glucose levels is of paramount impor-

ance in guiding these therapies. Conventional “finger-prick”
ethods have low compliance due to their invasive nature,

nd as a result, many diabetics do not monitor their blood
lucose levels as frequently as needed to obtain the medical

ddress all correspondence to: Michael F. G. Wood, Ontario Cancer Institute,
ivision of Biophysics and Bioimaging, 610 University Avenue, Toronto, ON,
anada M5G 2M9; Tel:+1 416 946 4501; Fax:+1 416 946 6529; E-mail:
wood@uhnres.utoronto.ca.
ournal of Biomedical Optics 044037-
care that could avoid long-term complications of the disease.
A noninvasive method for glucose monitoring would greatly
aid in increasing the frequency of monitoring and lead to a
decrease in the complications associated with diabetes.

Due to this tremendous need for a less invasive method of
blood glucose monitoring, a significant amount of research in
a variety of fields has focused on developing such a method.
Apart from diabetes, there is also a need for more frequent or
continuous monitoring of preterm infants and other at-risk
infants as well as people with rare metabolic disorders.2

Among the many approaches being investigated, research is
underway to develop optical methods for noninvasive moni-
toring, including infrared spectroscopy,3,4 optical coherence
tomography �OCT�5, photoacoustic techniques,6,7 Raman
spectroscopy,8 fluorescence techniques,9 and polarimetry.10–12

While some of these techniques are approaching acceptable
levels of accuracy in vivo, none have been approved for clini-
cal use; therefore, improvements in these modalities, combin-

1083-3668/2008/13�4�/044037/9/$25.00 © 2008 SPIE
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ng these modalities, or other modalities are needed.
Nearly all of the techniques in development measure a

ignal due not only to glucose but also to many other biologi-
al constituents. As a result, the techniques suffer in their
pecificity to glucose. In addition, the techniques lack sensi-
ivity because the signal due to glucose is generally much
maller than that due to other constituents. In this work, we
ropose a combined modality optical approach to determine
lucose concentration in biological media. Specifically, com-
ining near-infrared �NIR� spectroscopy signals, arguably the
ost promising optical method, with spectral polarization in-

ormation lends itself well to a hybrid approach, because si-
ultaneous measurements can be made with a single

olarization-sensitive optical system.13 This combination ex-
loits three optical effects of glucose: its NIR absorption spec-
rum, its optical rotatory dispersion �ORD, also known as op-
ical activity�, and its refractive index matching effect.14 For
he simulation study described in this paper, only the first two
ffects were explored, NIR absorption and ORD, since these
re specific to glucose. The refractive index matching effect is
he change in the refractive index of the media with changes
n constituent concentrations and is not specific to a single
nalyte.14 However, this effect may add further sensitivity and
ill be investigated in future work. Although glucose was
sed as the constituent of interest for this study, the technique
s applicable for other absorbing and optically active constitu-
nts and may well have application to other biological and
onbiological systems �e.g., detection of optically active
rugs, remote sensing of planetary �chiral� atmospheres�.

To test the combination of NIR and ORD spectroscopy for
oncentration determination, a model of blood plasma con-
aining glucose and plasma proteins was used to generate in-
ensity and polarization spectra in both clear and scattering

edia. As with nearly all of the developing optical tech-
iques, this requires extraction of the signal specific to glu-
ose from a signal also influenced by many confounding fac-
ors �plasma proteins and water in this case�. The field of
hemometrics15 provides a number of well-developed tech-
iques for analyzing measurements of complex chemical sys-
ems to yield constituent concentrations or other properties of
nterest. Most of these techniques regress one block of data,
uch as a set of NIR absorption spectra, to a single sample
roperty of the sample, such as glucose concentrations, to
uild a predictive model. In our case, we wish to regress two
locks of data �NIR intensity and ORD polarization spectra�
o improve the predictive abilities of the model. This requires
he use of multiblock chemometrics to combine two or more
f the data sets into a single predictive model.

The outline of this paper is as follows. First, the blood
lasma model used in this study to generate the intensity and
olarization signals as a function of wavelength is described.
oth a clear and a scattering model were employed in this

tudy to investigate our approach under these two conditions
f increasing biological relevance. Second, the chemometric
echniques used for concentration predictions are briefly re-
iewed, and the procedure for building and testing the predic-
ive regression model is described. Third, the results of the
redictions are presented for both the clear and scattering
odel, and the findings and their implications are discussed.
ournal of Biomedical Optics 044037-
2 Blood Plasma Model
To investigate the abilities of a combined intensity and polar-
ization method to predict analyte concentrations, a simulated
blood plasma model was employed as a biological model. The
model was implemented using MATLAB 7 �The MathWorks,
Inc�. Blood plasma is the liquid components of blood with the
blood cells removed, the primary constituents being the pro-
teins albumin, globulins, and fibrinogen as well as glucose.
Other constituents of blood plasma such as cholesterol and
urea were omitted in this model, because they exist in lower
levels.16 As noted above, due to the considerable interest in
noninvasive glucose monitoring, glucose was chosen as the
analyte of interest for this study. The mean and standard de-
viation of the concentrations of plasma components, in units
of g /100 ml, from a group containing both healthy and dia-
betic individuals are shown in Table 1.16 Concentrations of the
plasma components were randomly generated in this model
using these means and standard deviations and assuming a
normal distribution. The wavelength range of
500 to 2000 nm was chosen for this study because it is the
most frequently employed spectral window, due to relatively
low hemoglobin absorption, and includes the effects of both
absorption and optical activity. The following sections de-
scribe the methods used to create the clear and scattering
blood plasma models.

2.1 Absorption and Optical Rotatory Dispersion
The effects of absorption due to water, plasma proteins, and
glucose in the visible and NIR were modeled using experi-
mental data from a number of reports.17–20 Since data for in-
dividual plasma protein absorption dispersion could not be
found, the representative plasma total protein �albumin,
globulin, and fibrinogen� absorption was used. Figure 1 shows
the absorption coefficients �a��� per concentration of analyte
�cm−1 g−1 dl�, given as a function of wavelength for water,
total protein, and glucose. To calculate the absorption due to
water, the mass displacement caused by the addition of the
proteins and glucose was calculated and subtracted from the
mass of the initial water. This corrected mass of water was
then used to calculate the absorption due to water using the
data in Fig. 1. The absorption due to the total protein and
glucose was calculated simply by using the mass of each con-
stituent and the appropriate data from Fig. 1. The total absorp-
tion coefficient was then calculated as the sum of the absorp-
tion coefficients due to each component.

Table 1 Mean and standard deviation of blood plasma component
concentrations �g/100 ml�. The standard deviation of fibrinogen was
estimated based on standard deviations of albumin and globulin.

Analyte Mean Standard Deviation

Albumin 4.2 0.54

Globulin 2.8 0.47

Fibrinogen 0.3 0.045

Glucose 0.18 0.113
July/August 2008 � Vol. 13�4�2
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The effects of optical activity due to proteins and glucose
n the visible and NIR were modeled using Drude’s equation,

���� =
A

�2 − �c
2 , �1�

here ���� is the specific rotation of the molecule in units of
otation per concentration and pathlength �deg ml g−1 dm−1�
t the wavelength �, A is a constant specific to the molecule,
nd �c is the center wavelength.21 The parameters of Drude’s
quation for the plasma proteins21 and glucose22 are given in
able 2 and plotted in Fig. 2. The resulting rotation in degrees

s calculated as

���� =
����Cl

100
, �2�

here C is the concentration of the molecule in g /100 ml,
nd l is the optical pathlength in dm �dm=0.1 m�. The total
otation due to all components in plasma was calculated as the
um of the rotations due to each component.

Given the concentrations of the plasma components, the
bsorption and optical rotation signals as a function of wave-
ength, �a��� and ����, can be calculated using the data in
ig. 1 and Eq. �2�, respectively. The full polarization state of

he light before and after passing through the plasma sample
an be described with a four-element Stokes vector S.23 The

ig. 1 Absorption spectra of blood plasma proteins and glucose in the
isible and NIR.

able 2 Parameters of Drude’s equation for plasma proteins and glu-
ose.

Analyte A �c

Albumin −1.75�107 264

Globulin −1.48�107 211

Fibrinogen −1.37�107 260

Glucose 1.72�107 150
ournal of Biomedical Optics 044037-
first element I represents the intensity of the light beam, the
second element Q represents the linear polarization at 0 and
90 deg, the third element U represents the linear polarization
at 45 and 135 deg, and the fourth element V represents the
circular polarization. Polarization effects are applied to the
Stokes vector using a 4�4 Mueller matrix M. Given the
input state of polarization Si, the output state So after passing
through the clear sample is calculated as

So = MaMrSi , �3�

�
Io���
Qo���
Uo���
Vo���

� = �
e−�a���l 0 0 0

0 e−�a���l 0 0

0 0 e−�a���l 0

0 0 0 e−�a���l
�

��
1 0 0 0

0 cos�2����� sin�2����� 0

0 − sin�2����� cos�2����� 0

0 0 0 1
�

��
Ii���
Qi���
Ui���
Vi���

� , �4�

where the first matrix Ma applies the effect of absorption by
reducing the intensity of the beam, and the second matrix Mr
applies the effect of optical activity by rotating the plane of
linear polarization of the input beam. The order of these ma-
trix multiplications is not important, since Ma is symmetrical
about its diagonal. Equation �4� is valid only for optically
clear media; the presence of multiple scattering necessitates
the use of scattering models such as the Monte Carlo method
described below.

Six wavelength-dependent signals were available to build
the regression model �refer to Sec. 3� and predict the glucose
concentrations in clear �nonscattering� media �� ��� and ����

Fig. 2 Optical rotatory dispersion of blood plasma proteins and glu-
cose as given by Drude’s equation in the visible and NIR.
a

July/August 2008 � Vol. 13�4�3
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alculated based on the constituent concentrations, and the
tokes parameters Io���, Qo���, Uo���, and Vo��� calculated
sing Eq. �4� based on the input polarization�. In an experi-
ental situation, the measurements of the Stokes parameters
ould be made and �a��� and ���� would be calculated
ased on measured Stokes parameters. Using the described
ethods to calculate absorption and optical activity, intensity

nd polarization spectra were generated from 500 to 2000 nm
n 2-nm intervals with physiological levels of the plasma con-
tituents, and with the optical pathlength through the plasma
eing 1 cm. The light incident on the sample was set to be
inearly polarized horizontally �Si= �1 1 0 0�T�. To assess the
redictive abilities of the models in an experimental situation,
imulated Gaussian noise was added to each signal with an
ncreasing standard deviation. This added uncertainty simu-
ated both source and measurement noise.

.2 Scattering Monte Carlo Model
o investigate the ability to predict analyte concentrations us-

ng the combined method in scattering biological media such
s tissue, a Monte Carlo model for polarized light propagation
n multiply scattering media was used. This validated

odel,24,25 available for download,26 records individual pho-
on packet polarizations in the form of Stokes vectors and
ncludes the effects of multiple scattering, absorption, optical
ctivity, and linear birefringence. The model tracks a large
umber of photons as they propagate and multiply scatter
hrough the sample, then sums the photons to calculate their

acroscopic properties of interest.
To reduce the computational time needed to generate data,

imulations were run to create a lookup-table with absorption
nd optical activity as the independent parameters. This
ookup table approach is similar to that taken in other Monte
arlo studies.27 The computational time required was reduced

n two ways: first, the number of simulations needed was
educed because data for each full spectrum were not re-
uired, since each spectrum could be generated from the
ookup table; second, fewer photons were needed in each
imulation because the lookup table could be smoothed to
educe the noise due to the statistical nature of the model. To
reate the lookup table, the values of absorption and optical
ctivity were varied in the full range of blood plasma physi-
logical levels as found from the compiled data. The changes
n refractive index and the resulting effects on scattering due
o the variations in plasma components were ignored in this
tudy to reduce the parameter space of the lookup table, and
hus to reduce the number of simulations required. This ap-
roximation is a reasonable first step; in fact, its inclusion,
hile complicating the analysis, may actually improve the

bility to predict analyte concentrations due to an increased
ensitivity to concentration changes in both light intensity and
olarization.13 In addition, refractive index dispersion in all
aterials was ignored to reduce the required simulations. Fi-

ally, the linear birefringence was set to zero since this effect
as ignored in the current study.

Simulations were run with the absorption coefficient varied
etween 0 and 30 cm−1 in 2-cm−1 increments, and with the
ptical activity varied between 0 and 0.009 rad cm−1 �0 and
.5157 deg cm−1� in 0.001 rad cm−1 �0.05730 deg cm−1� in-
rements, to create a 10�16 lookup table. All simulations
ournal of Biomedical Optics 044037-
were run with 3�108 photons. The sample was a 1�1
�1 cm3 cube with a scattering coefficient of 60 cm−1, which
is somewhat lower than that of tissues; this coefficient was
selected for this feasibility investigation to reduce the simula-
tion times by reducing the number of photons required so
each photon would retain a higher degree of polarization. The
scattering particles in the medium were simulated to represent
spherical polystyrene microspheres with a diameter of
1.4 �m. The refractive indices of the scattering particles and
the surrounding media were 1.59 and 1.33, respectively �cor-
responding to polystyrene and water�, giving an anisotropy
g=0.93 for the microspheres at 633 nm. The photons exiting
the sample were binned in 1 mm2 detection areas with an
acceptance angle of 20 deg to approximate a typical experi-
mental measurement. The forward direction �direct transmis-
sion� was chosen as the geometry of interest to compare the
results with those from the clear plasma model. As in the clear
media case, the light incident on the sample was set to be
horizontally linearly polarized �Si= �1 1 0 0�T�. Spectra were
then generated with the lookup table to create wavelength-
dependent Stokes parameters �Io���, Qo���, Uo���, and
Vo���� between 500 and 2000 nm in 2-nm intervals using the
appropriate values for optical activity and absorption at each
wavelength. The orientation of polarization ���� as a function
of wavelength was found from the output Stokes parameters
as

���� =
1

2
tan−1�Uo���

Qo���� . �5�

The orientation of polarization was directly proportional to
the optical rotation ���� because it changed with the rotation,
and could be used in place of ���� in the regression calcula-
tions. Five spectroscopic signals �Io���, Qo���, Uo���, Vo���,
and ����� were available to build the regression model and
predict the glucose concentrations from the scattering model.
In addition to the noise due to multiple scattering—and simi-
lar to the clear model—simulated Gaussian noise was added
to each Stokes parameter with an increasing standard devia-
tion to asses the predictive abilities of the methodology when
experimental noise �i.e., source output fluctuations and mea-
surement uncertainties� was present.

3 Chemometric Methods
Two chemometric algorithms, unfold partial least squares
�U-PLS�,28 and multiblock partial least squares �MB-PLS�.29

were used to combine the intensity �I��� and �a���� and po-
larization �Q���, U���, V���, and ����� data in a model to
predict the glucose concentration. These two methods were
chosen because they employ the widely used conventional
partial least squares �PLS� regression algorithm currently used
in most glucose monitoring techniques. The Multiblock Tool-
box for MATLAB was used to implement the algorithms.30

This section will briefly review these two algorithms; further
details are available in the cited references.

Both algorithms are based on the widely used PLS regres-
sion method. In PLS, a regression relationship is found be-
tween a descriptor block or matrix of data �in our case, a set
of intensity or polarization spectra� and a response block or
matrix �in our case, a set of corresponding glucose concentra-
July/August 2008 � Vol. 13�4�4
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ions�. This is achieved by decomposing both the descriptor
nd response blocks into so-called latent variables that de-
cribe the maximum variance in the data. The regression is
alculated based on how the variances in each block explain
ach other—in other words, finding the covariance between
he blocks. In situations where there is more than one descrip-
or block, as is the case with the intensity and polarization

easurements, a method of combining the information in
oth descriptor blocks must be used to predict the response
lock.

The most rudimentary approach for combining and re-
ressing the data is U-PLS. In this method, each descriptor
lock is placed in a single combined block, as shown in Fig.
, and normal PLS regression is performed on this combined
escriptor block. In other words, as the name suggests, U-PLS
unfolds” the multiblock data into a single block. The inclu-
ion of more information in the combined descriptor block
an improve the predictive ability of the model. A more so-
histicated method of combining and regressing the data is
B-PLS. In this method, the blocks are kept separate; how-

ver, the blocks are used to create a single super descriptor
lock that is then regressed to the response block using PLS.
he creation of this super block involves finding the common

nformation contained in each of the descriptor blocks, re-
erred to as the “consensus” in the literature. In other words,
he variations in the signals that are common in both descrip-
or blocks are identified as the consensus between the two
locks. Since each block contains measurements done on the
ame samples, looking at the common information contained
n each block can provide better predictive ability for analytes
hat affect both measurement techniques �as in the plasma

odel�. For example, glucose �as well as plasma proteins�
nfluences both the intensity and polarization signals, causing

ig. 3 Schematic summarizing how �a� U-PLS, and �b� MB-PLS com-
ine and regress the generated intensity and polarization data.
ournal of Biomedical Optics 044037-
a common variation in both signals that should be identified in
the calculation of the consensus.

Once the regression techniques have been chosen, two
steps are required to develop a chemometric model: calibra-
tion and testing. In calibration, often referred to as training, a
set of data �both descriptor and response blocks� is used to
create the PLS model. In our case, a set of intensity and po-
larization spectra �descriptor blocks� and glucose concentra-
tions corresponding to each spectra �response blocks� were
used to calculate the regression parameters using either
U-PLS or MB-PLS. Once the model is built in the calibration
step, it must be tested with new data to ensure the validity of
the model and to assess its predictive ability. In our test, a new
set of intensity and polarization spectra, along with corre-
sponding glucose concentrations, was generated for the pur-
pose of testing both regression techniques. The size of both
the calibration and testing data sets was 400 spectra with cor-
responding glucose concentrations. The predictive ability of
the methods was determined by calculating the root mean
square error of prediction �percent error� using the testing data
set, with increasing noise added to both the training and test-
ing spectra. The percent error was then used to calculate the
error as a percentage of the mean glucose concentration. Re-
sults from conventional PLS regression on intensity and po-
larization spectra separately were also calculated to quantify
the improvement in the combined methodology.

4 Results and Discussion
4.1 Clear Media
The percent error values for the clear plasma model are shown
in Figs. 4–6. They demonstrate the improved predictive abili-
ties of the combined intensity and polarization approach. The
descriptor block contained 400 spectra between 500 and
2000 nm in 2-nm intervals, with each spectrum having a cor-
responding glucose concentration in the response block. For
reference, a typical human blood glucose level is
0.18 g /100 ml �from Table 1�; to be within the generally ac-

Fig. 4 Percent error as a function of simulated noise for �a��� and
���� in clear media regressed individually and in combination using
PLS, U-PLS, and MB-PLS. Points are prediction results and lines are a
guide for the eye.
July/August 2008 � Vol. 13�4�5
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eptable level of error for glucose monitoring of 15%31 �some
ther reports indicate 20%32�, the predictive error should be
ess than 0.027 g /100 ml. Figure 4 plots the results from re-
ressing ���� and �a��� individually, with increasing noise
dded to the signals using conventional PLS, and the com-
ined regression results using U-PLS and MB-PLS. In this
ase, the standard deviation of the added noise was specified
s a percentage of the mean value of each intensity and po-
arization signal. This was done to corrupt the signals at ap-
roximately the same rate, because the signals differed con-
iderably in magnitude. Figure 4 shows that regressing the
bsorption spectra �a��� produced much better predictive re-
ults �i.e., less corrupted by noise� than regressing the optical
ctivity spectra ����. This is due to the similarity in the ORD
f the plasma components, as shown in Fig. 1, making them
ifficult for the PLS regression to separate. However, when

ig. 5 Percent error as a function of simulated noise for I���, Q���,
nd U��� in clear media regressed individually using PLS. Points are
rediction results and lines are a guide for the eye.

ig. 6 Percent error as a function of simulated noise for I���, Q���,
nd U��� in clear media combined and regressed using PLS, U-PLS,
nd MB-PLS. Points are prediction results and lines are a guide for the
ye.
ournal of Biomedical Optics 044037-
the absorption and optical activity spectra were regressed with
the combined methods �either with U-PLS or MB-PLS�, there
was considerable improvement over regressing the absorption
spectra �or ORD� alone. Both combined methods produced an
approximately 25% reduction in percent error with the maxi-
mum added noise over �a��� alone. As hypothesized, the
combination of the information in both these spectra de-
creased the predictive error. Given the poor results of the
optical activity spectra regression, the large improvement
when it was combined with the absorption spectra was some-
what surprising. Evidently, enough information was contained
in the optical activity spectra to complement the absorption
spectra and improve the combined regression results.

To test the regression methods on more experimentally re-
alistic signals �i.e., on results from a typical polarimeter13�,
the Stokes vectors of the output light from the clear plasma
model were calculated using Eq. �4� with input horizontally
and linearly polarized light �Si= �1 1 0 0�T�. The results from
regressing the Stokes parameters individually �including the
intensity I���� using conventional PLS with increasing noise
added to each parameter are shown in Fig. 5. Stokes param-
eter V��� �circular polarization� was omitted because it con-
tained no information in the present model. Predictions with
the parameter U��� produced poor results because the input
light was horizontally polarized, yielding small values of
U��� that were rapidly corrupted by the added noise. A small
change due to the rotation of the polarization from optical
activity was present; however, this small change was quickly
swamped by the added noise. Predictions using either I��� or
Q��� parameters produced similar and far superior results.
The predictive errors using I��� and Q��� were very similar
since they contained nearly identical information due to the
fully horizontal polarization of the input light �Ii���=Qi����.
Stokes parameter Q��� was attenuated by the absorption and
slightly reduced while the optical activity while the polariza-
tion vector was rotated. In this case, even though Q��� was
affected by both absorption and optical activity, there was no
improvement gained over I���, which contained only absorp-
tion information. This suggests that even though Q��� was
affected by both absorption and optical activity, it was diffi-
cult for PLS to decouple the effects.

The results from combined regression methods for the
Stokes parameters are shown in Fig. 6, along with the result
for the regression of I��� alone �from Fig. 5� for comparison.
Both U-PLS and MB-PLS produced lower predictive errors
than regressing I��� alone. In both cases, combining either
I��� and Q��� or I���, Q���, and U��� resulted in similar
predictive errors, yielding little additional information in the
U��� signal as discussed above. However, MB-PLS produced
significantly lower predictive errors than U-PLS. The reduc-
tions in percent error for U-PLS and MB-PLS were approxi-
mately 8% and 15%, respectively, at the maximum noise
level. These results differed from the results of predicting us-
ing ���� and �a���, where U-PLS and MB-PLS prediction
accuracy were nearly the same. Evidently, the creation of the
consensus super-block in MB-PLS by combining the common
information in each descriptor block leads to better predictive
power in the case of the Stokes parameters. This is likely due
to the mix of absorption and optical activity information con-
tained in Stokes parameters Q��� and U��� as opposed to the
July/August 2008 � Vol. 13�4�6
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ure optical activity and absorption channels ���� and �a���.
his mixing may make it difficult for the regression methods

o decouple the effects when building the predictive models.
hese results suggest that regressing absorption combined
ith optical rotation, rather than the measured Stokes param-

ters, provides better predictive abilities �an improvement of
pproximately 25% for combined ���� and �a��� versus an
mprovement of approximately 15% for the combined Stokes
arameters�. However, when optical rotation is calculated
ased on measured Stokes parameters, the magnitude of noise
ill increase as the parameters are divided in Eq. �5�. There-

ore, as shown later, the potential improvement is diminished.
o summarize, it is apparent from these results that combining

he information contained in the intensity and polarization
pectra improves the predictive abilities for glucose in simu-
ated clear media.

.2 Scattering Media
he results of predictive calculations using the data generated
y the Monte Carlo model for scattering media are shown in
igs. 7–9. Similar to the clear media, the descriptor block
ontained 400 spectra between 500 and 2000 nm in 2-nm
ntervals with each spectrum having a corresponding glucose
oncentration in the response block. As also was the case for
he clear media, a reduction in predictive error was achieved
y combining the intensity and polarization signals. Figure 7
lots the percent error for the Stokes parameters I���, Q���,
���, and V���, plus the orientation of the polarization ����

alculated using Eq. �5�, with each regressed individually. In
ontrast to Fig. 5, the results for the parameter V��� are now
hown, since scattering produced some transfer of linear-to-
ircular polarization �giving a nonzero value of V���� and
herefore some information is now contained in V���. As ex-
ected, when using single information channels, regression
sing I��� produced the lowest predictive error. The other
tokes parameters and ���� suffered �to various extents� in
redictive ability as a result of the depolarizing effects of
ultiple scattering. This depolarizing reduced the values of

ig. 7 Percent error as a function of simulated noise for I���, Q���,
���, V���, and ���� in scattering media regressed individually using
LS. Points are prediction results and lines are a guide for the eye.
ournal of Biomedical Optics 044037-
the Stokes parameters, leading to large corruption, relative to
I���, by the added simulated noise. The fraction of retained
polarization for the incident fully linear �horizontally� polar-
ized light was approximately 50% after propagating through
the media. As a result, the values of the Stokes parameters
Q���, U���, and V��� were significantly reduced. Because the
incident light was horizontally polarized, Q��� yielded much
lower predictive errors than either U���, V���, or ����, al-
though the percent error was still higher than that for I��� due
to depolarization.

The predictive errors for the combined regression methods
are shown in Figs. 8 and 9, along with the results for the
regression of I��� alone for comparison �from Fig. 6�. In ad-
dition to the combinations of the Stokes vectors, the orienta-

Fig. 8 Percent error as a function of simulated noise for I���, Q���,
U���, and ���� in scattering media combined and regressed using PLS
and U-PLS. Points are prediction results and lines are a guide for the
eye. Note that the points overlap for I��� regressed using PLS and I���
and ���� combined and regressed using U-PLS.

Fig. 9 Percent error as a function of simulated noise for I���, Q���,
U���, and ���� in scattering media combined and regressed using PLS
and MB-PLS. Points are prediction results and lines are a guide for the
eye.
July/August 2008 � Vol. 13�4�7
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ion of the polarization vector ���� as calculated by Eq. �5�
as also combined and regressed with I��� using U-PLS and
B-PLS. All the combined methods with Stokes parameters

mproved the predictive power; however, the improvement
as more modest than that for clear media calculations. In

ddition, little difference was observed between the percent
rrors for U-PLS and MB-PLS, as was seen for the clear
edia, with the overall reduction in error being approximately

% for all combined Stokes parameter prediction methods.
lso, the combination of I��� and ���� through U-PLS or
B-PLS produced little or no improvement. In fact, the pre-

ictions when using U-PLS shown in Fig. 8 overlapped with
redictions when using I��� alone. This is likely due to an
ncrease in noise when calculating ���� through Eq. �5�,
hich led to a decrease in predictive power �i.e., the effective

rror on ���� was approximately two times that for the other
arameters�. As previously discussed, the lower improve-
ents are due to the depolarizing effects of multiple scattering

nd the subsequent reduction in the Stokes parameters Q���,
���, and V���. However, even with the lower improvement

or the combined approaches in scattering media, the results
till demonstrate the potential for the method. A significant
mprovement in prediction is still achieved with the combina-
ion of intensity and polarization information from multiply
cattering media. Future work will further investigate the in-
uence of scattering in an effort to determine at what level of
cattering an improvement is still realized. Since this rather
arge reduction in improvement has already been observed
rom clear media to a scattering coefficient of 60 cm−1, it
ould seem unlikely that predictions with more realistic

issue-scattering values �	100 cm−1� would exhibit signifi-
ant improvement. However, this is yet to be determined, and
moothing or other preprocessing steps could be used to re-
uce the signal noise. The present results demonstrate the po-
ential for the methodology in clear or moderately scattering
iological fluids such as blood plasma, or extra-cellular fluid
nd tissues such as the aqueous humor of the eye.

Four additional areas have been identified for further in-
estigation and will be explored in future work. First, the
ffects of refractive index matching due to variations in
onstituents13 will be added to the model to investigate how
hese effects influence the predictive abilities of the regression
echniques. The changes in the refractive index and resulting
hanges in the scattering properties of the media will influ-
nce both the intensity and polarization of the light propagat-
ng through the media and may add some additional sensitiv-
ty to the constituent concentration changes. It is possible that
his may improve the predictive power of this methodology.
econd, the influence of other common biological optical ef-
ects such as linear birefringence25 on the abilities of the re-
ression methods will also be investigated. Linear birefrin-
ence has the effect of transferring the polarization state from
inear to circular or vice versa, and will interfere with the
ffects of optical activity. The extent to which this influences
he abilities of the methodology will be investigated by em-
loying a method of polar Mueller matrix decomposition to
ecouple the two effects.33,34 This will be done in both clear
nd scattering media with increasing scattering coefficients.
hird, the effect of detection geometry and wavelength range
ill also be investigated to determine the optimal experimen-
ournal of Biomedical Optics 044037-
tal parameters for the measurement of intensity and polariza-
tion signals.11,13 This will involve both simulations and ex-
perimental work. Fourth, experimental testing must be
completed to validate the combining methodology, because
the current results are for simulated measurements only. This
will involve the design, construction, and testing of a com-
bined spectral intensity and polarimetry system suitable for
experimental measurements.

5 Conclusions
We have simulated and analyzed a combined intensity and
polarization method for analyte concentration determination
in clear and scattering biological-like media with glucose as
the analyte of interest. The determination of glucose concen-
trations in biological media is a crucially important unsolved
problem in clinical medicine, because a tremendous need ex-
ists for a noninvasive method that diabetics can use to monitor
their blood glucose levels. The methodology was tested using
a simulated blood plasma model for both clear and scattering
media. The spectral intensity and polarization data generated
through this model were used to build and test predictive ch-
emometric models that combined the two data sets. The re-
sults showed that the combination of these two modalities
improved the predictive ability over the use of intensity or
polarization data alone, for both simulated clear and scattering
media, thus demonstrating potential for the methodology. This
improvement is reduced in scattering media due to light de-
polorization. Thus, the applicability of these methods may be
limited in higher scattering media; however, further study is
required to investigate this. In addition, the effects of refrac-
tive index matching, tissue birefringence, detection geometry,
and wavelength range, which have not been included in the
current model, require further study. The development of a
suitable combined intensity and polarization system and ex-
perimental testing of the methodology is also required for
validation. The applicability of this methodology is not lim-
ited to glucose sensing, because other analytes of interest
could be targeted. The methodology is also not limited to
biological media, since nonbiological applications for concen-
tration determination of absorbing optically active molecules
exist—for example, in remote sensing scenarios. To our
knowledge, this is the first demonstration of a combined spec-
tral intensity and polarization methodology for analyte con-
centration determination.
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